VisSched: An Auction based Scheduler for Vision Workloads on Heterogeneous Processors

Diksha Moolchandani*, Anshul Kumar*, José F. Martínez[¥], and Smruti R. Sarangi* *Indian Institute of Technology Delhi, India [¥]Cornell University, Ithaca, NY, USA

Biography

- I (Diksha Moolchandani) am a Ph.D. Research Scholar in the School of Information Technology, IIT Delhi since 2016
 - Bachelors in Electronics and Communication Engineering, IIITDM Jabalpur, 2015
- My research areas are designing novel architectures and architectural optimizations for image processing and computer vision applications
- Email: diksha.moolchandani@cse.iitd.ac.in
- Website: http://www.cse.iitd.ac.in/~diksha/

Problem Motivation

- Application specific benchmarks share common kernels. Eg: MEVBench, SD-VBS, CortexSuite, CAVBench
 - Traditional scheduling algorithms do not exploit this property
- Multiple applications run concurrently on edge, cloud, server
- Conventional way is to design accelerators
 - FPGAs & GPUs do not support multi-application concurrency
- Design specialized scheduling algorithms for scheduling these workloads on multicores that exploit the correlation among them

System Diagram Pattern Table Memory L2 Cache Auction В B B Controller S S HW Structures Multicore Big core S Small core

Characterization of Workloads

- Use the instruction mix in an execution interval as a feature vector
- Perform clustering
- Observations:
 - Any interval belongs to one of the five clusters
 - Strong positive correlation between the same phases of different workloads
 - Strong correlation between the phase and the IPC of an interval

VisSched: Flow Chart

5

Experimental Setup

VisSched: Auction Process

Terms	Symbols	VisSched	
Wallet	W	W	
Auctioneer's fee	F	к* C	
Bid	μ*(W - F)	μ*(W - κ* C)	
Bonus	В	IPC/Energy + W _{base}	
Loser's subsidy	L	$L = \lambda^* W_{base}$	
Updating the metrics	Winner		Loser
Utility	$(1 - \mu)(W_{old} - F) + B$		0
Wallet (W _{new})	$(1 - \mu)(W_{old} - F) + B$		W _{old} + L

Symbol	Meaning
W _{base}	Base Wallet balance
С	Migration cost calculated as a function of cache misses
IPC	Instructions per cycle
Energy	Energy consumed by the system
к	Normalization constant
μ	Bidding Strategy
λ	Constant
W _{new}	Wallet balance in next auction round
W _{old}	Wallet balance in prev. auction round

VisSched: Auction Process

Results

- Performance improvement 18%
- ED² improvement 17%

Conclusion

- Proposed a clustering-based technique to divide the execution intervals of a workload into phases
- Demonstrated the correlation of phases across workloads
- Proposed an auction-based scheduling scheme where each thread has a replenishable virtual wallet to bid for cores
- Used hill climbing to reach a Nash solution and store the bidding strategies of the bidders in the pattern table
- 18% performance improvement
- 17% ED² improvement

Questions

