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Problem Motivation
• Application specific benchmarks share 

common kernels. Eg: MEVBench, SD-VBS, 
CortexSuite, CAVBench
• Traditional scheduling algorithms do not exploit 

this property

• Multiple applications run concurrently on 
edge, cloud, server

• Conventional way is to design accelerators
• FPGAs & GPUs do not support multi-application 

concurrency 

• Design specialized scheduling algorithms for 
scheduling these workloads on multicores 
that exploit the correlation among them
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Characterization of Workloads

• Use the instruction mix in 
an execution interval as a 
feature vector

• Perform clustering

• Observations:
• Any interval belongs to one 

of the five clusters

• Strong positive correlation 
between the same phases of 
different workloads

• Strong correlation between 
the phase and the IPC of an 
interval
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VisSched: Flow Chart
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Parameter Value

Cores 10 small + 6 big

Frequency 1.55 GHz & 3.1 
GHz

L1 I/D 
Cache

32 KB, 64 bytes 
block size, 
associativity 4

Shared L2 256 KB per bank, 
16 banks, 64 bytes 
block size, 
associativity 8

Experimental Setup
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VisSched: Auction Process
Terms Symbols VisSched

Wallet W W

Auctioneer's fee F * C

Bid µ*(W - F) µ*(W - * C)

Bonus B IPC/Energy + Wbase

Loser's subsidy L L = * Wbase

Updating the 
metrics

Winner Loser

Utility (1 - µ)(Wold - F) + B 0

Wallet (Wnew) (1 - µ)(Wold - F) + B Wold + L

Symbol Meaning

Wbase Base Wallet balance

C Migration cost calculated as a 
function of cache misses

IPC Instructions per cycle

Energy Energy consumed by the system

 Normalization constant

µ Bidding Strategy

 Constant

Wnew Wallet balance in next auction round

Wold Wallet balance in prev. auction round
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VisSched: Auction Process
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Results

• Performance improvement 18%
• ED2 improvement 17%
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Conclusion

• Proposed a clustering-based technique to divide the execution intervals 
of a workload into phases

• Demonstrated the correlation of phases across workloads

• Proposed an auction-based scheduling scheme where each thread has a 
replenishable virtual wallet to bid for cores

• Used hill climbing to reach a Nash solution and store the bidding 
strategies of the bidders in the pattern table

• 18% performance improvement

• 17% ED2 improvement
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Questions
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