
VisSched: An Auction based Scheduler for Vision
Workloads on Heterogeneous Processors

Diksha Moolchandani*, Anshul Kumar*,

José F. Martínez¥, and Smruti R. Sarangi*

*Indian Institute of Technology Delhi, India
¥Cornell University, Ithaca, NY, USA

Biography

• I (Diksha Moolchandani) am a Ph.D. Research

Scholar in the School of Information Technology, IIT

Delhi since 2016
• Bachelors in Electronics and Communication Engineering,

IIITDM Jabalpur, 2015

• My research areas are designing novel architectures

and architectural optimizations for image processing

and computer vision applications

• Email: diksha.moolchandani@cse.iitd.ac.in

• Website: http://www.cse.iitd.ac.in/~diksha/

2

mailto:diksha.moolchandani@cse.iitd.ac.in
http://www.cse.iitd.ac.in/~diksha/

Problem Motivation
• Application specific benchmarks share

common kernels. Eg: MEVBench, SD-VBS,
CortexSuite, CAVBench
• Traditional scheduling algorithms do not exploit

this property

• Multiple applications run concurrently on
edge, cloud, server

• Conventional way is to design accelerators
• FPGAs & GPUs do not support multi-application

concurrency

• Design specialized scheduling algorithms for
scheduling these workloads on multicores
that exploit the correlation among them

Multicore

B

Memory Pattern Table

Auction
Controller

L2 Cache

HW
Structures

B B B

B B S S

S S S S

S S S S

Big core Small coreSB

System Diagram

3

Characterization of Workloads

• Use the instruction mix in
an execution interval as a
feature vector

• Perform clustering

• Observations:
• Any interval belongs to one

of the five clusters

• Strong positive correlation
between the same phases of
different workloads

• Strong correlation between
the phase and the IPC of an
interval

4

VisSched: Flow Chart

Create phase
table: phase-to-
core mapping

Auction core c
among the threads
in its waiting queue

Predict the next phase for
thread t & enqueue it in
the appropriate waiting

queue

Is scheduling
quantum of
thread t on

core c
exhausted?

Schedule thread
t to core c

YesW
in

n
er

th

re
ad

 t

Parameter Value

Cores 10 small + 6 big

Frequency 1.55 GHz & 3.1
GHz

L1 I/D
Cache

32 KB, 64 bytes
block size,
associativity 4

Shared L2 256 KB per bank,
16 banks, 64 bytes
block size,
associativity 8

Experimental Setup

5

VisSched: Auction Process
Terms Symbols VisSched

Wallet W W

Auctioneer's fee F * C

Bid µ*(W - F) µ*(W - * C)

Bonus B IPC/Energy + Wbase

Loser's subsidy L L = * Wbase

Updating the
metrics

Winner Loser

Utility (1 - µ)(Wold - F) + B 0

Wallet (Wnew) (1 - µ)(Wold - F) + B Wold + L

Symbol Meaning

Wbase Base Wallet balance

C Migration cost calculated as a
function of cache misses

IPC Instructions per cycle

Energy Energy consumed by the system

 Normalization constant

µ Bidding Strategy

 Constant

Wnew Wallet balance in next auction round

Wold Wallet balance in prev. auction round

6

VisSched: Auction Process

Auction
Controller

Phase Change

Packet from CPU

C1 T1,...Tn

C2 T2,...Ti

Waiting Queue

Core id

Wallet Table

T1 W-*C

T2

C

Pattern
Table

Perform
auction

Winner thread

*

Bidding
strategy

Bid

Miss
history
table

Thread ids

7

Results

• Performance improvement 18%
• ED2 improvement 17%

8

Conclusion

• Proposed a clustering-based technique to divide the execution intervals
of a workload into phases

• Demonstrated the correlation of phases across workloads

• Proposed an auction-based scheduling scheme where each thread has a
replenishable virtual wallet to bid for cores

• Used hill climbing to reach a Nash solution and store the bidding
strategies of the bidders in the pattern table

• 18% performance improvement

• 17% ED2 improvement

9

Questions

10

