
AMPeD: An Analytical Model for Performance in
Distributed Training of Transformers

Diksha Moolchandani, Joyjit Kundu, Frederik Ruelens, Peter Vrancx, Timon Evenblij, and Manu Perumkunnil
Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium

{diksha.moolchandani, joyjit.kundu, frederik.ruelens, peter.vrancx, timon.evenblij, manu.perumkunnil}@imec.be

Abstract—Transformers are a class of machine learning models
that have piqued high interest recently due to a multitude of
reasons. They can process multiple modalities efficiently and have
excellent scalability. Despite these obvious advantages, training
these large models is very time-consuming. Hence, there have
been efforts to speed up the training process using efficient
distributed implementations. Many different types of parallelism
have been identified that can be employed standalone or in
combination. However, naively combining different paralleliza-
tion schemes can incur significant communication overheads,
thereby potentially defeating the purpose of distributed training.
Thus, it becomes vital to predict the right mapping of different
parallelisms to the underlying system architecture. In this work,
we propose AMPeD, an analytical model for performance in dis-
tributed training of transformers. It exposes all the transformer
model parameters, potential parallelism choices (along with their
mapping onto the system), the accelerator as well as system
architecture specifications as tunable knobs, thereby enabling
hardware-software co-design. With the help of 3 case studies, we
show that the combinations of parallelisms predicted to be effi-
cient by AMPeD conform with the results from the state-of-the-art
literature. Using AMPeD, we also show that future distributed
systems consisting of optical communication substrates can train
large models up to 4× faster as compared to the current state-of-
the-art systems without modifying the peak computational power
of the accelerators. Finally, we validate AMPeD with in-house
experiments on real systems and via published literature. The
max. observed error is limited to 12%. The model is available
here: https://github.com/CSA-infra/AMPeD

I. INTRODUCTION

Deep learning algorithms are the basic building blocks of
any AI application. An estimate of their growing importance
can be gauged from their growing market value. The deep
learning market was valued at 34.8 billion USD in 2021 and is
predicted to be valued at 526.7 billion USD in 2030 growing
at a CAGR of 34.3% [1]. In recent times, there have been
particularly significant efforts to characterize [2] and accelerate
the training of large language models such as transformers.
The main reasons are the impressive scalability and accuracy
achieved by transformer models on real-world tasks such as
neural machine translation [3], sentiment analysis [4], auto-
matic speech recognition [5], text classification [6], question
answering, and visual object recognition [7].

However, this accuracy comes at a cost. The sizes of the
transformer models and their datasets have grown exponen-
tially over the years [8]. More specifically, the number of
parameters in these transformer models has grown from 94
million in ELMo (2018) to 174 trillion in BaGuaLu (2021);
nearly six orders of magnitude in 3 years. Training such large

transformer models is computationally intensive and time-
consuming. For example, when GPT-3 was first introduced in
2020, training it required 3.1 million GPU hours and would
cost about $4.6 million [9]. Moreover, the overall size of such
large models is far beyond the physical memory capacity of a
single accelerator (even for GPUs available today with large
memories such as the 80GB Nvidia H100 cards [10]). Hence,
there have been several attempts to accelerate the training
process by distributing it to multiple accelerators.

The basic idea behind distributed training is to distribute the
independent computations of the model onto multiple acceler-
ators and enable parallel execution. Multiple parallelization
strategies exist (see Section II), each one with advantages
and disadvantages. Identifying the right type and degree of
parallelism to be exploited under different constraints (such
as budget, time, memory, and ease of implementation) can
help in improving the training throughput considerably.

It is impractical to find the optimal type and degree of
parallelism by performing actual training experiments given
the above listed constraints. Additionally, distributed training
of large ML models requires thousands of high-end GPUs;
such systems are mostly not within the affordable budget of
academia or research labs. Hence, most academic projects
utilize cloud frameworks such as Microsoft Azure, Google
Cloud Computing, or Amazon Web Services to train their
proposed models. Nevertheless, executing these long-running
experiments on cloud-hosted systems is also costly because
users are billed per hour. In addition to the long training time
and high cost of operation, the resulting energy usage and
equivalent CO2 emissions are not in line with the goals of
sustainable computing. Thus, it becomes extremely important
to launch optimal parallel configurations that can train the
model in an acceptable amount of time, budget, and energy.
This makes it crucial to have a preliminary estimate of the
training time for different configurations.

Thus, a prediction of the training time for a given train-
ing algorithm and parallelism choices for a given system
architecture with an accelerator design becomes an essential
element for the proposed distributed training workflow. The
usage of performance predictors for scheduling jobs on cloud
computing platforms to maximize a given metric (such as
overall performance, throughput, or QoS) is well known [11],
[12]. Performance prediction for deep learning workloads is
also a well-established area. However, most of the research is
focused on inference [13] and training of convolutional neural

1

networks [14], [15].
In this work, we propose an analytical performance model

for distributed training of transformers. To the best of our
knowledge, such a predictor is not a part of the training work-
flow (for transformers) that is usually executed on distributed
systems. The main contributions of this work are as follows:

❶ We propose AMPeD, an analytical model for performance
in distributed training of transformers that exposes many
tunable knobs for design space exploration, such as machine
learning model configurations, all the parallelism mappings
(combinations of PP, DP, TP, and MoE), system architecture
design choices, and the accelerator parameters.

❷ With the help of different case studies, we show that the
predictions from AMPeD conform with the results from the
state-of-the-art literature, in addition to providing insights and
explanations into the training time breakdown. This further
enables hardware-software co-design. Using AMPeD, we also
show that future distributed system architectures consisting of
optical communication substrates can train large models up to
4× faster as compared to their training time on the current
state-of-the-art systems.

❸ Finally, we validate AMPeD using in-house training
experiments on smaller models and via published literature
on large-scale distributed training approaches, demonstrating
a maximal error of 12%.

II. BACKGROUND

A. Transformers: Architecture and Training

Transformers are a class of deep neural networks that can
learn context from sequential data such as words in a sentence.
The architecture of a transformer primarily depends on an
attention mechanism that finds correlations between different
elements of a sequence to compute a representation of the
sequence [16]. It can be either an encoder-decoder or encoder-
only or decoder-only architecture, where each layer of these
encoders and decoders consists of stacked self-attention and
fully connected feed forward layers.

Training a transformer (or any artificial neural network)
involves the following steps: ❶ loading (a batch of) input data,
❷ calculating the activations in the forward pass, ❸ calculating
the loss at the end of the forward pass by comparing with the
ground truth, ❹ calculating the gradients in the backward pass,
and ❺ updating the weights using the gradients.

B. Types of Parallelisms in Distributed Training

In this section, we discuss the types of parallelisms that
can be exploited to accelerate the training of transformers on
distributed systems.

1) Data Parallelism (DP): This type of parallelism involves
the distribution of input data set across multiple workers. Each
worker sees only a part of the full data set, while weight ma-
trices are replicated across ranks/workers leading to a higher
memory footprint. There is no communication in the forward
pass because it involves local matrix multiplications, however,
gradient all-reduce is required as a collective operation during
backpropagation.

An improvement over memory-intensive DP is Zero-
DP [17]. The basic idea is to distribute the model parameters,
gradients, and optimizer states across all workers and commu-
nicate them when necessary. This technique introduces extra
communication in the forward and backward pass along with
the already existing gradient all-reduce communication. How-
ever, it reduces the memory footprint by orders of magnitude,
thereby supporting training with larger batch sizes that results
in higher utilization of the accelerators.

2) Tensor Model Parallelism (TP): In Tensor Model Par-
allelism [8], the neural network weights are split while the
training data is replicated across workers. Thus, every worker
sees the same data but computes only a part of the activation
or gradient, which is required to be communicated across
accelerators in-between layers during forward and backward
propagation. TP involves the splitting of the matrix multipli-
cations within a transformer layer across multiple workers.

3) Pipeline Model Parallelism (PP): Pipeline model paral-
lelism [8] involves splitting the layers of the neural network
model across the workers. Activations from one set of layers,
mapped to a worker, are passed on to the next set of layers,
mapped to another worker. These sequential layers work on
different data in parallel when the input batch is divided
into microbatches that can be injected sequentially into the
pipelined workers. Such a strategy can introduce pipeline
bubbles or periods where an accelerator is idle, waiting for
data to arrive from the previous accelerator in the pipeline.
An overview of different techniques to reduce this idle time
can be found in [8].

4) Mixture of Experts (MoE): MoE [18] refers to a collec-
tion of several experts (feed-forward neural networks), with the
experts split across workers. A trainable gating network within
a transformer block chooses a sparse combination of experts
to process a given input. The basic idea here is to exploit
conditional computation where only parts of the network
are active, thereby leading to sparsity. Thus, the number of
model parameters to express the training data explodes by
several orders of magnitude with a minimal increase in the
computational cost.

III. RELATED WORK

There have been multiple efforts in recent years toward pre-
dicting the performance of deep learning training workloads.
Yan et al. [19] proposed a performance model for the training
of deep neural networks on distributed systems, however, the
formulation takes into account only convolutional and fully
connected layers. On similar lines, Qi et al. [20] proposed an
analytical performance prediction model for training CNNs
on distributed infrastructure that relies on the deterministic
computations associated with CNNs and mapping them onto
the underlying system and communication strategies. Simi-
larly, Gianniti et al. [14] proposed a linear regression-based
performance prediction model for training individual CNN
layers on a single accelerator. Another recent work by Yu
et al. [21] proposed a machine learning-based performance
model, aided by a heuristic based on the ratios of memory

2

bandwidth and compute units of the two accelerators, to
predict the training times of DNNs on another accelerator
while using the characteristic behavior of the machine learning
model on a given accelerator. Rashidi et al. [22] proposed a
simulator for hardware software co-design exploration of deep
learning training algorithms, however they primarily focus on
the effect of different network topologies and communication
type on the training time.

In contrast, AMPeD is significantly different from all the
previous works. It analytically models the performance for
distributed training of transformers on a given system architec-
ture, accelerator design, and mapping of different parallelisms
to the underlying system, and the model parameters. Such
modeling enables hardware-software co-design of the trans-
formers models and the system architecture. Though AMPeD
also utilizes the inherent determinism associated with training
these language models, mapping different types of parallelism
for time-efficient training is a challenging task.

IV. THE MAKING OF AMPeD
AMPeD assumes a distributed system with multiple nodes,

where each node is further composed of several homogeneous
accelerators. The accelerators within a node communicate with
each other using intra-node links and those across different
nodes communicate using inter-node links. AMPeD assumes
that the training time is dominated by the computation time
and communication time of these accelerators (and not of
their host processors). It incorporates the effect of parallelism
on computation time and also the communication overheads
incurred as a result of this. In the following sections, we
consider all four kinds of parallelism – DP, TP, PP and MoE
and their impact on training times.

The overall training time is calculated in Eq. 1, where
Nbatch represents the number of batches in the training data,∑

l represents the sum over all layers of the neural network,
U(l) and M(l) represent computation time per layer and
communication time per layer l, respectively. The subscript
letter indicates the forward pass (f), the backward pass (b),
the weight update phase (w), or the all-reduce of gradients
between the forward and backward pass (g). W (l) stands
for the waiting time per layer caused by the bubbles of
pipelining (if PP is considered) as explained in later sec-
tions. NTP, NDP, and NPP represent the degrees of tensor
model parallelism, data parallelism, and pipeline parallelism,
respectively. In Eq. 1, we express the total training time as
the sum of the computation time (scaled down by the number
of workers involved with different parallelism choices), and
communication time, summed over all the layers and scaled
by the number of batches.

Time = Nbatch

∑
l

[Uf (l) + Ub(l) + Uw(l)

NTP NDP NPP
+Mf (l)

+Mb(l) +Mg(l) +W (l)
] (1)

A. Estimating Forward Pass Computation Time
The computation time for the forward pass Uf (l) of a

transformer layer l is calculated by summing over the con-

tributions of all the sublayers within it (denoted by i; e.g.,
the Multi-Layer Perceptron or the attention sublayer), – we
multiply the number of operations (either MACs (NMAC(l, i)),
or non-linear operations(Nnonlin(l, i)), with the reciprocal of
the throughput of the accelerator for that operation, CMAC

and Cnonlin, respectively. To quantify the time for which the
computation unit is busy, the throughput is scaled with the
maximum precision of the operands divided by the hardware-
determined precision of the functional unit. Here, Sp, Sact,
Snonlin denote parameter precision, activation precision, and
nonlinear operation precision. SFUMAC

and SFUnonlin
denote

the hardware-determined precision of the functional unit; ceil
represents the ceiling function.

The reciprocal of the throughput is calculated based on
the accelerator design parameters, and a microbatch efficiency
factor eff(ub). The accelerator design parameters include the
frequency f , the number of cores Ncores, the number of
functional units (NFU and NFUnonlin

) and their respective
widths (WFU and WFUnonlin

), expressed in the precision
of the functional units as described before. We scale the
peak performance of the MAC units by eff(ub) to capture
the utilization of compute cores – this can be obtained by
fitting the experimental data based on the application and the
underlying hardware. Empirically, a functional form of a.ub

b+ub ,
allows a good fit until a critical microbatch size, with a and b
being functions of the application and the underlying system
architecture under consideration [23]. Note that when ub ≫1,
performance can decay due to generalization gaps [24].

Uf (l) =
∑
i

NMAC(l, i) CMAC ceil

[
max(Sp(l, i), Sact(l, i))

SFUMAC

]

+Nnonlin(l, i) Cnonlin ceil

[
Snonlin(l, i))

SFUnonlin

]
,

(2)

CMAC = (f Ncores NFU WFU eff(ub))−1 (3)

Cnonlin = (f NFUnonlin
WFUnonlin

)−1 (4)

B. Estimating Forward Pass Communication Time

Distributing calculations over multiple accelerators incurs
communication. We incorporate all the methods of distributing
training of large transformers (as explained in Section II)
in Eq. 5 for the forward pass. We consider the intra- and
inter-node parallelisms separately since they use different
communication bandwidths. The communication incurred as a
result of tensor parallelism within a node and across nodes is
added assuming a hierarchical all-reduce operation, where the
activations are first reduced within the node and then across
nodes depending on the mapping. For pipeline parallelism,
communication is always from one accelerator to the next.
The pipeline is only as fast as its slowest step, hence we take
the maximum of the intra-node and inter-node communication
overhead. We include the communication overhead as a result
of the mixture of experts parallelism, MfMoE

. Note that regular
DP does not have any communication in the forward pass. For
Zero-powered data parallelism, we add an overall overhead
factor, MfDP

[17].

3

Mf (l) = (1 +MfDP
)[Mf,TP,intra(l) +Mf,TP,inter(l)

+Mf,MoE(l) + max(Mf,PP,intra(l),Mf,PP,inter(l))]
(5)

1) Tensor Parallel Communication Time: Eq. 6 shows the
calculation of the forward pass communication time as a result
of intra-node tensor parallelism. Here, Cintra represents the
latency of the intra-node communication link, and BWintra

represents the bandwidth of the intra-node link. Tintra is an
intra-node topology factor describing the number of commu-
nication steps required for a certain topology divided by the
number of accelerators communicating [25]. For example, an
all-reduce of the tensor parallel accelerators implemented on
a ring topology within a node results in a topology factor of
2 (NTP,intra − 1)/NTP,intra. The number of activations that
needs to be communicated for intra-node tensor parallelism is
represented by Nact,TP(l). A transformer layer using tensor
parallelism incurs two all-reduce steps, one for the attention
sublayer, and the other for the MLP sublayer. Both steps com-
municate the same amount of data, which can be calculated
with the effective batch size (b), sequence length (s), and
hidden layer size (h) [8].

Inter-node tensor parallel communication is calculated simi-
larly, using inter-node latency, bandwidth, and topology factor.
The number of activations that need to be communicated is 0
when no inter-node TP is used, otherwise, it is Nact,TP(l).

Mf,TP,intra(l) = Cintra Tintra NTP,intra

+Nact,TP(l)
Sact

BWintra
Tintra,

(6)

where Nact,TP(l) = 2bsh.
2) Pipeline Parallel Communication Time: The communi-

cation time incurred as a result of pipeline model parallelism
is estimated similarly. If intra-node PP is used, we estimate
the communication overhead per layer as shown in Eq. 7,
where every accelerator communicates Nact,PP(l) activations
to the next accelerator in sequence. The pipeline topology is
fixed (one-to-one links), so no topology factor is needed. Since
pipeline communication happens in parallel for all layers in
the model, its overhead is independent of the number of layers.
We include a factor 1

L to scale the overhead per layer for use in
Eq. 1. L is the total number of layers in the transformer model.
Inter-node PP overhead is estimated in exactly the same way,
using different values for the latency and bandwidth variables.

Mf,PP,intra(l) =
1

L

[
Cintra +Nact,PP(l)

Sact

BWintra

]
, (7)

where Nact,PP(l) = bsh.

C. Estimating the Impact of Pipeline Bubbles

The waiting time due to pipeline bubbles can be summarized
in Eq. 8. R describes the ratio of non-overlapping bubbles in
the deployed pipeline parallel scheme versus the number of
non-overlapping bubbles in naive pipeline parallelism [26], al-
lowing to easily estimate more efficient pipeline strategies [8].
Nub is the number of microbatches per (mini)batch. The
equation represents the waiting time W (l) for NPP − 1 idle

pipeline steps, when there are Nub useful forward and back-
ward pipeline steps. Each pipeline step works on a microbatch,
with a forward pass and backward pass. So, the duration of
each step (∼ Eq. 1) is determined by forward and backward
pass computation time, scaled by the total amount of parallel
workers, and the forward and backward pass communication
time. Note that weight updates and gradient synchronization
happen outside of the pipeline.

W (l) = R
NPP − 1

Nub
×

[
Uf (l) + Ub(l)

L NTP NDP NPP
+Mb(l) +Mf (l)

]
(8)

D. Mixture of Experts Communication Time

Using MoE induces two all-to-all communication patterns
per layer that include experts [18]. If no experts are used in a
layer, there is no extra communication time. We estimate this
overhead in Eq. 9. Nnodes represents the number of multi-
accelerator nodes in the system. The topology factor TMoE

now represents the communication steps required to perform
an all-to-all operation on a certain topology. In a default
pairwise exchange case, it is equal to (Nnodes − 1)/Nnodes.
A part of the communication will go to accelerators in the
same node, and another part of it will go to accelerators in a
different node. We assume a uniform random distribution and
perfect load-balancing between experts. Thus, the accelerator
communicates with another accelerator in the same node with
a probability of 1/Nnodes, and with an accelerator in a different
node with a probability of (Nnodes−1)/Nnodes. Nact,MoE(l) is
the same as Nact,PP(l) for the layers where experts are used.

Mf,MoE(l) = 2 Cinter TMoE Nnodes

+ 2 Nact,MoE(l) Sact TMoE

×
[

1

Nnodes BWintra
+

Nnodes − 1

Nnodes BWinter

] (9)

E. Estimating Backward Pass Communication Time

Estimating communication time for the backward pass is
very similar to the forward pass, albeit activations are replaced
by error and gradient calculations. For brevity, we choose to
omit the corresponding equations.

F. Estimating Gradient Communication Time

After gradients are calculated on each accelerator, they need
to be reduced over all accelerators, so that each accelerator
can update the weights it is responsible for. We assume
a hierarchical all-reduce implementation in Eq. 10, that is,
summing the time required to first reduce inside a node with
the time required to reduce between nodes. Eq. 11 shows
the time taken for intra-node gradient reduction, ∼ Eq. 6,
also estimating an all-reduce communication type. The main
difference is that we are using data parallel accelerators in
this case and communicating gradients instead of activations.
Hence, we use the number of communicating accelerators
NDP,intra, the number of gradients to communicate Ng , and
the size of each gradient Sg . Similar calculations are needed
for inter-node gradient communication as well.

Mg(l) = Mg,intra +Mg,inter (10)
Mg,intra(l) = Cintra Tintra NDP,intra +Ng(l)

Sg

BWintra
Tintra (11)

4

0

25

50

75

100

0

15

30

45

60

U
sa

ge
 (

%
)

U
sa

ge
(%

)

Data Parallelism Experiment (8 GPUs)

Pipeline Parallelism Experiment (4 GPUs)

9/22/2022
4:48:00 PM

9/22/2022
4:51:20 PM

9/22/2022
4:54:40 PM

9/22/2022
4:58:00 PM

9/22/2022
5:01:20 PM

9/22/2022
5:04:4

11/22/2022
10:52:33 PM

11/22/2022
10:52:59 PM

11/22/2022
10:53:24 PM

11/22/2022
10:53:50 PM

11/22/2022
10:54:21 PM

CPU Usage GPU Usage

Fig. 1. Example runs of validation experiments for DP and PP on 8 and 4
GPU node configurations, respectively.

G. Estimating the Weight Update Time

Eq.12 shows the computation time required to update the
weights after gradient calculation and reduction. NMAC(l)
represents the number of weights to be updated in layer l.
Since weight updates are also MAC operations, we multiply
the number of weights in the model with the reciprocal of the
MAC throughput CMAC.

Uw(l) = CMAC NMAC(l) (12)

To conclude, AMPeD is generic enough to be ported to other
DNN models. The primary differences involved here will be in
the calculation of NMAC , Nact, Nerr, Ng , and Nnonlin. Also
in our modeling, MoE is specific to transformers. However,
AMPeD is parameterizable enough to turn off this feature.

V. VALIDATION

TABLE I
EXPERIMENTAL SETUP TO VALIDATE DP AND PP

Node HGX-2 (Upto 16 accelerators)
Accelerator Nvidia V100 (GV100) SXM3
Architecture Volta (5120 CUDA Cores, 640 Tensor Cores)
Clock (Base/Boost) 1290 MHz/1530 MHz
Process Tech. 12nm (TSMC)

Memory Specifications
Memory Type HBM2
Memory Size (Specified/Available) 32 GB/31.75 GB
Memory Bus 4096
Memory Clock 876 MHz (1752 MBps effective)
Memory Bandwidth 897 GB/s
Accelerator TDP 250W
Host Memory 1.6 TB
Intra-node Network NVLink Interconnect+NVSwitch

A. Validating the Impact of DP

In our first validation experiment with DP, we train minGPT
(85M parameters) [27] on a single HGX-2 node. Table I details
the system specifications for our experimental setup. Fig. 1
shows the CPU and GPU usage observed while validating DP
and PP on 8 and 4 GPUs (within a single node), respectively.
minGPT is a transformer language model with 12 hidden
layers and 12 attention heads for each attention layer in the
transformer encoder. The dimensionality of the embedding and
hidden states is set to 768.

We monitor the training times for a fixed number of batches
and capture the normalized training times for 1, 2, 4, 8, and
16 GPUs (within a single node) as shown in Fig. 2a). We

adjust the batch size if needed to fit into the GPU memory
for optimal batch efficiency. For the predictions, we use the
average microbatch efficiency as obtained during the runtime
of the experiment. We observe that the trends obtained from
the hardware experiments (labeled as Experimental in the
figure) match well with those obtained from AMPeD (labeled
as Predicted in the figure).

B. Validating the Impact of PP

For the second validation experiment of AMPeD, we train
minGPT with PP [28]. In these experiments, we use a variant
of the minGPT model with 16 hidden layers (increased the
layers to utilize PP to 16 GPUs) and 8 attention heads for each
attention layer in the transformer encoder (1.24B parameters).
The dimensionality of the embedding and hidden states is set
to 1024 (set to achieve an optimal training time). For our
experiments, we train the model using the corpus of Wikipedia
articles [29].

Similar to the previous experiment, Fig. 2b) compares
relative training times on 2, 4, 8, and 16 GPUs with respect
to the training time on 2 GPUs. For these experiments, we set
the number of microbatches to be equal to the pipeline degree
or the number of GPUs used. We see that AMPeD captures
the experimental trend accurately. The performance saturation
from 8 to 16 GPUs is primarily due to the specifics of the
implementation we use for the experiments– it is bottlenecked
by the memory of the last GPU (all the microbatches are
gathered at the last GPU) and thus, does not allow us to scale
the global batch size with increasing the number of GPUs. We
further validate the performance of PP at scale using published
data in the following section.

C. Validating against Published Results

In this section, we validate AMPeD at scale against the
published data in the literature. Since the training data from
the published literature often lacks exact parameter details, we
limited our validation to the cases with sufficient detail [8],
[26]. First, we consider different language models (GPT) with
a varied number of parameters. In Table II, we compare
the performance (TFLOP/sec/GPU) of published data and the
predictions from AMPeD. The data correspond to language
models with 145B, 310B, 530B and 1T [8]. We observe that
AMPeD is within 12% of the published data.

TABLE II
COMPARISON OF PERFORMANCE: AMPeD VS PUBLISHED DATA [8]

Model Size TP PP DP AMPeD Published Error (%)
TFLOPs/GPU TFLOPs/GPU

145B 8 8 24 147 148 0.6
310B 8 16 12 162 155 4.5
530B 8 35 9 148.6 163 8.8

1T 8 64 6 144.3 163 11.47

Note that we cannot conclude that the errors increase with
the model size. As can be observed that the degree of PP
also increases with the model size. However, the published
results [8] have used interleaved PP that allows the overlapping
of pipeline bubbles. In our model, we capture the effect of
overlapping bubbles using the factor R as shown in Eq. 8.

5

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16
0

20

40

60

80

100

120

140

160

12 24 36 48 60

N
or

m
al

iz
ed

 t
ra

in
in

g
 t

im
e

No. of GPUs No. of GPUs

T
FL

O
Ps

/G
PU

microbatch size

 a) b) c)DP PP PP (Published)

Experimental Predicted (AMPeD)

Fig. 2. Comparison of the normalized training time versus number of GPUs used between experiments and AMPeD for minGPT in a a) data parallel setting,
b) pipeline parallel setting. c) Performance measured in TFLOP/S/GPU as a function of the batch size for a GPT model with 175 billion parameters on 96
GPUs with pipeline parallelism: published results [8] and AMPeD

For the estimations in Table II, we set R = 1, and thus do
not consider overlapping bubbles. Hence, with increasing PP
our bubble time also increased and there is a larger visible
error. Nevertheless, R can be tuned to fit the data or can be
modeled in more detail as a function of pipeline stages and
interleaving.

Next, we verify the same performance metric as a function
of batch size for GPT-3 model with 175B parameters on 96
GPUs as presented in [8], using only pipeline parallelism.
We observe that AMPeD captures the performance saturation
when increasing the microbatch size. The error is ≈ 11% for
a microbatch size of 12 and converges to merely ≈ 2% for a
microbatch size of 60 as shown in Fig.2c).

TABLE III
COMPARISON OF THE NORMALIZED TRAINING THROUGHPUT FOR GPIPE

IMPLEMENTATION (PP) ON P100 GPUS WITH PCI-E USING 32
MINIBATCHES (M).

number of GPUS 2 4 8
M=32 (published [26]) 1 1.8 3.3
M=32 (prediction) 1 1.84 3.19

We further validate the GPipe implementation of a 24-
layer transformer model on NVIDIA P100 GPUs connected
via PCIe3.0. Table. III compares the computed speedup with
32 microbatches for multiple GPUs with the normalized ones
stated in [26]. As presented in [26], we tune the microbatch
size according to the available memory of P100. With the
resulting efficiency, we are able to match the published results
within 12% error bar.

To conclude, our work has been validated taking into ac-
count the most relevant parallelism combinations that are being
used in the current deployments [8], [26] and will be used in
future as well. The only parallelism that we did not validate
with the published results is MoE. The primary reason was the
unavailability of exact details of the model/system parameters
or the difference in the algorithmic implementation. We also
specifically tried to extract these details from [30], [31].
However, these implementations were different than those
considered in AMPeD.

We have shown that AMPed can use empirically derived
efficiency factors to accurately predict the training time. A

predictive model for eff(ub) is left for future work.

VI. CASE STUDY I: OPTIMIZING PARALLELISM
CONFIGURATION FOR A GIVEN SYSTEM

TABLE IV
ACCELERATOR CONFIGURATIONS USED IN THE EXPLORATION

Hardware Freq. (f) Ncores NFU WFU NFUnonlin
WFUnonlin

BWintra

cycles/s bits/s
Nvidia A100 1.41E+09 108 4 512 192 4 2.4E+12
Nvidia H100 1.8E+09 132 4 1024 320 4 3.6E+12

<64,8,1,1,2,1> <64,8,2,1,1,1>

<DP_inter,DP_intra,TP_inter,TP_intra,PP_inter,PP_intra>

1.5

T
im

e
(1

0
6
 s

ec
)

2.0
2.5

3.0
3.5
4.0

0.0
0.5

1.0

comp. time fwd pass
comp. time bwd pass
weight update time
comm. time TP fwd pass
comm. time PP fwd pass
comm. time zero-DP fwd pass
comm. time TP bwd pass
comm. time PP bwd pass
comm. time zero-DP bwd pass
pipeline bubble time
All-reduce DP comm. time

Fig. 3. Training time breakdown for two example configurations: one with
PP and other with TP in inter-node accelerators

In this section, we perform a design space exploration
using AMPeD. We consider a system with a total of 1024
accelerators distributed across 128 nodes, where each node
consists of 8 accelerators. The accelerator is modeled after
an Nvidia A100 GPU [32], connected via NVLink. Table IV
shows the details used in the calculations. The nodes are
connected over an HDR Infiniband network. We perform all
the experiments for the Megatron model with 145 billion
parameters taken from [8]. For this exhaustive exploration,
we consider all possible combinations of data, pipeline, and
tensor parallelism in intra-node and inter-node accelerators.

We use AMPeD to explore the training times for batch
sizes equal to 4096, 8192, and 16384. We require large
batch sizes in distributed training as the degrees of DP and
PP negatively affect the eventual microbatch size. A large
enough microbatch results in higher microbatch efficiency per
accelerator. However, convergence and accuracy issues might
arise as large batch sizes tend to converge to sharp minima that
lead to poorer generalization [33]. Nevertheless, there have
been works to mitigate this issue by keeping the variance of

6

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

20

30

40

50

60

70

80

90

o

o

o

o
o o o

o

o
batch_size 4096
batch_size 8192
batch_size 16384

TP_intra 8

PP_inter, TP_inter

E
xe

cu
ti
on

 t
im

e
(d

ay
s)

Fig. 4. TP intra-node, (PP, TP) inter-node

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

o
o

o o
o

o

o

o

o

batch_size 4096
batch_size 8192
batch_size 16384

TP_intra 8

TP_inter, DP_inter

E
xe

cu
ti
on

 t
im

e
(d

ay
s)

20

25

30

35

40

45

50

55

Fig. 5. TP intra-node, (TP, DP) inter-node

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

E
xe

cu
ti
on

 t
im

e
(d

ay
s)

18

20

22

24

26

28

30

o
o

o o o o o o

o

batch_size 4096
batch_size 8192
batch_size 16384

TP_intra 8

DP_inter, PP_inter

Fig. 6. TP intra-node, (PP, DP) inter-node

o

o

o
o o o

o

o

DP_intra 8

PP_inter, TP_inter

o

batch_size 4096
batch_size 8192
batch_size 16384

E
xe

cu
ti
on

 t
im

e
(d

ay
s)

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

50

60

70

80

90

100

40

Fig. 7. DP intra-node, (PP, TP) inter-node

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

o o o o o
o

o

o
o

batch_size 4096

efficiency

batch_size 8192
batch_size 16384E

xe
cu

ti
on

 t
im

e
(d

ay
s)

M
ic

ro
b
at

ch
 E

ff
ic

ie
n
cy

40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

45

50

55

60

65

70

o

o

o

o
o

oo
o

DP_intra 8

TP_inter, DP_inter

Fig. 8. DP intra-node, (TP, DP) inter-node

o o o o o o oE
xe

cu
ti
on

 t
im

e
(d

ay
s)

DP_intra 8

o

batch_size 4096
batch_size 8192
batch_size 16384

DP_inter, PP_inter

(1
2
8
,

1
)

(6
4
,

2
)

(3
2
,

4
)

(1
6
,

8
)

(8
,

1
6
)

(4
,

3
2
)

(2
,

6
4
)

(1
,

1
2
8
)

38

40

42

44

46

48

50

52

o

Fig. 9. DP intra-node, (PP, DP) inter-node

larger batches constant while matching the accuracy of small
batch sizes [34], [35]. In our exploration, we consider batch
sizes up to 16384, assuming minimal impact on convergence
or accuracy.

A. AMPeD Training Time Breakdown

AMPeD has the capability to show a detailed breakdown of
the time spent in computation and communication due to TP,
PP, and DP individually. Fig. 3 shows a breakdown of training
time for two example configurations, where DPinter = 64,
and DPintra = 8. For the first config, PPinter = 2 and for the
second config, TPinter = 2. From the breakdown example,
we can observe that the pipeline bubble time in the first
configuration is negligible compared to the communication
overheads in the second configuration. We use insights from
this breakdown to understand the design space exploration in
the following sections.

B. Exploration with PP in Intra-node Accelerators

For PP in intra-node and TP in inter-node accelerators, the
training time is quite large, ∼ 90 days. Upon replacing TP with
a combination of PP and DP in inter-node accelerators, the
training time drops by around 50% for all cases. The primary
reason is the huge communication time incurred in executing
TP in inter-node accelerators as a result of two all-reduce
communications of activations at each transformer layer over
the slow inter-node network. Even though the training time
improves on distributing DP/PP in inter-node accelerators, it
is still large, as the microbatch efficiency is quite low (approx.
31%) even for a larger batch size of 16384; it is even lower
for smaller batch sizes. The microbatch size is the batch size

shrinked by a factor of PPintra in the former case (TP in
inter-node) and PPintra ×PPinter ×DPinter in the latter case
(combination of DP and PP in inter-node).

C. Exploration with TP in Intra-node Accelerators

Fig. 4, 5, and 6 show the training time with TP in intra-node
accelerators. We observe that with pure PP or DP in inter-node
accelerators, the obtained training time is small (∼ 18 − 21
days), while it is quite long (∼ 57 days) with TP in inter-
node accelerators. The impact of bubble time as a result of
having PP in inter-node accelerators is orders of magnitude
smaller than the impact of communication time as a result of
TP. Hence, Fig. 4 shows almost 3× increase in the training
time in scaling down PP and scaling up TP by 2 (both done
simultaneously to keep the number of accelerators the same).
The microbatch efficiency is high for all cases because using
TP in intra-node accelerators limits the degree of DP or PP
to 128 for our setup, which is sufficient to ensure a high
microbatch efficiency.

Another useful insight is that PP performs slightly worse
than DP in inter-node accelerators. For example, for 16384
batch size, the training time using PP for inter-node accel-
erators is ∼ 21 days, while the training time using DP for
inter-node accelerators is ∼ 18 days. Even though DP incurs
an all-reduce overhead while PP incurs pipeline bubbles, the
time spent in DP all-reduce is 2 orders of magnitude smaller
than the pipeline bubble time.

D. Exploration with DP in Intra-node Accelerators

In Fig. 7, 8, and 9, we show the training time when DP is
implemented in the intra-node accelerators. We observe that

7

the curves for training times in Fig. 7 start to merge for TP
> PP in the inter-node accelerators. The primary reason is the
dominance of the communication time over computation time
with increasing TP, which is not impacted by the batch size.

We also observe in Figure 8 that for TP+DP in inter-
node accelerators, the training time curves show different
behavior for different batch sizes even when the microbatch
efficiency behaves similarly. First, we observe the figure till the
configuration (TPinter, DPinter) = (4, 32). For smaller batch
sizes of 4096 and 8192, the training time increases as inter-
node DP increases, albeit the growth is slow for the batch size
8192. Interestingly, for a batch size of 16384, the training time
decreases with an increase in the inter-node DP. For all batch
sizes, communication time (not shown) reduces similarly with
decreasing inter-node TP. However, computation time goes
up due to decreasing microbatch efficiency, which decays at
a faster pace for smaller batch sizes. Note that because the
microbatch efficiency curve has a fixed lower limit of 25% in
our case, the trend for training time changes suddenly after
the configuration (TPinter, DPinter) = (4, 32) – this is an
artifact of the efficiency function we choose.

Comparing Fig. 6 and 9, we observe that the training
time is quite high (36 − 38 days) with DP in intra-node
accelerators, while it is nearly 18− 21 days with TP in intra-
node accelerators for a batch size of 16384. The primary
reason for this behavior is a smaller microbatch size that
occurs as a result of a high degree of DP leading to low
microbatch efficiency (explained in Section VI-B). Hence, the
microbatch efficiency is only 30% for the former case (DP
in intra-node) and up to 80% for the latter case (TP in intra-
node).

E. Case Study I Conclusions

Based on our explorations, we can conclude the following:
❶ Large batch sizes are required (due to microbatch ef-

ficiency) to keep performance high when parallelizing on
large distributed systems using PP or DP. ❷ TP effectively
parallelizes without lowering microbatch efficiency but is
communication-intensive. Hence, it is very efficient to utilize
for accelerators connected with high intra-node bandwidth, but
very inefficient over slower inter-node communication links.
❸ DP and PP are better options (2× faster training than TP) to
exploit in inter-node accelerators connected via slower inter-
node communication links. ❹ Comparing the same degree of
pure DP and pure PP in inter-node accelerators, the time spent
in DP all-reduce is 2× less than the pipeline bubble time if
the model and system configuration are along the lines of our
experimental setup. ❺ For the same inter-node configurations,
TP in intra-node accelerators is 2× faster than PP, DP, or a
combination of DP and PP.

VII. CASE STUDY II: EXPLORING INTER-NODE
PARALLELISM FOR LOW-END SYSTEMS

From the previous case study, one might conclude that
employing DP for inter-node parallelism is always beneficial
over using PP (see conclusion ❹ in Section VI-E). However,

this is not always the case as the best parallelism strategy
depends on the many parameters included in AMPeD. For
example, we can explore low-end system architectures, with
the same total amount of accelerators but fewer accelerators
and network cards per node and using EDR network cards
instead of HDR network cards. Such low-end system architec-
tures are often more commonly available from cloud service
providers as compared to high-end systems with many intra-
node accelerators and very high-speed network cards. Fig. 10
shows the training time for the Megatron 145B model using
a batch size of 8192 and TP for intra-node parallelism. We
compare the training times using DP versus PP for inter-
node accelerators when using 1, 2, 4, and 8 accelerator(s)
+ network card(s) per node. When using 1 accelerator and
1 network card in every node, the all-reduce communication
pattern in DP takes a significant amount of time, whereas PP
only involves point-to-point communication of the activations
or gradients from one layer to the next. In this case, using PP
for inter-node parallelism results in 80% higher performance.
When upgrading to 2 accelerators/network cards per node, the
difference is greatly reduced to a 17% performance benefit
for PP. For the other configurations, DP is the better choice.
Interestingly, for the 4 accelerators/network cards per node
configuration, while the PP configuration takes around 1 day
(∼ 4%) longer to train the model, it is most likely a more
energy-efficient configuration. Using PP introduces pipeline
bubbles (∼ 11% in this case), in which accelerators are idling.
During this idle time, the required power is greatly reduced.
If the power savings of the system during these bubbles is
larger than the extra energy cost due to the increased training
time, this is still a more energy-efficient configuration. In this
case, the lower power state should use less than ∼ 30% of the
power of the system during full execution, which is a realistic
scenario. We leave power modeling and more detailed analysis
for future work.

1 GPU
/nod

e

2 GPU
s/n

od
e

4 GPU
s/n

od
e

8 GPU
s/n

od
e

* * * * * *
* * * * * *

* * * * * *
* * * * * *

* * * * * *
* * * * * *

* * * * * *

T
im

e
(1

0
6
 s

ec
)

0
1

2

3
4

5

6

7

* * *

comp. time
comm. time fwd pass
comm. time bwd pass
comm. time DP
pipeline bubble time

DP
PP

o o o o o o o o o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o

o o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o
o o o o o o o o o o o o o

o o o o o o o o o o o o o
o o o o o o o o o o o o o
o o o o o o o o o o o o o

o o o

Fig. 10. Execution/training time for Megatron 145B model with DP/PP
in inter-node, TP in intra-node, and different number of accelerators/EDR
network cards per node keeping the total accelerators constant to 1024

From this example exploration, we conclude that for low-
end system architecture configurations, the optimal parallel
strategy choice can be different than for high-end systems.

VIII. CASE STUDY III: EXPLORING FUTURE
DISTRIBUTED SYSTEMS USING OPTICAL COMMUNICATION

SUBSTRATES

AMPeD can also be used to explore the design space for fu-

8

ture systems. This section gives such an example, specifically
on how distributed training time can be impacted by emerg-
ing interconnect technologies such as optical communication
substrates [36] enabled by silicon photonics [37], [38]. Using
AMPeD, we explore the performance of distributed training
systems where the accelerators in a node are connected by an
optical communication substrate. We assume the accelerators
do not include optical communication on the die, so the optical
substrate is responsible for converting electrical to optical
signals. Under these assumptions for the experimental setup,
three potential optimizations can be exploited to increase per-
formance [36]: ❶ Opt.1 When connecting multiple nodes, the
inter-node bandwidth per accelerator is increased because now
multiple substrates are easily connected with optical fibers,
bypassing the network card interface. We assume one fiber
attached per accelerator on the edge of the substrate ❷ Opt.2
The substrate makes it easier to connect more accelerators in
the same node at their full off-chip bandwidth. ❸ Opt.3 Off-
chip bandwidth can be increased for future accelerator designs,
as the electrical signals from the accelerator have to travel a
very short distance to the substrate which converts the signals
to the optical domain.

Ref.
: 8

 G
PU

s/n
od

e

Opt1
: R

ef.
+ In

c.

int
er-

no
de

 BW

Opt1
+16

 G
PU

s/n
od

e

Opt1
+32

 G
PU

s/n
od

e

Opt1
+48

 G
PU

s/n
od

e

48
 G

PU
s/n

od
e

2x
 of

f-c
hip

 BW

48
 G

PU
s/n

od
e

4x
 of

f-c
hip

 BW

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
im

e

comp. time
comm. time TP fwd pass
comm. time zero-DP fwd pass
comm. time TP bwd pass
comm. time zero-DP fwd pass
comm. time DP all-reduce
MoE comm. overhead

Fig. 11. Optical communication substrates improve large model training times
by increasing inter-node bandwidth and enabling more accelerators per node
for existing accelerator designs, and allowing increased intra-node bandwidth
for future accelerator designs.

We explore these performance benefits for training a large
GLaM model [39] on 3072 accelerators. We assume 8-bit
precision and a batch size of 8192. TP is exploited within
a node and DP across nodes. The accelerator is modeled after
the Nvidia H100 GPU [10], with details shown in Table IV.

Fig. 11 shows the performance benefits. The first bar
represents a reference implementation using 8 accelerators in a
node communicating inside the node with NVlink interconnect
and between nodes with 8 NDR InfiniBand network cards.
The second bar shows an equal amount of accelerators in a
node, but using Opt. 1 to increase the inter-node bandwidth
equal to the accelerator off-chip bandwidth multiplied by the
number of accelerators on the edge of the substrate (8 for a
4x2 config). All communication overhead is heavily reduced,
especially the overhead related to the MoE communication
(reduced by a factor ∼ 6). Only intra-node TP communication
stays equal because the intra-node bandwidth was not changed.
Overall, the Opt. 1 leads to a 42% performance improvement
in this scenario. The following bars (bars 3 to 5) show Opt. 2,

where we use the increasing number of accelerators inside a
node to exploit more tensor parallelism. We chose 4x4, 4x8,
and 6x8 (estimated to be the max. rectangular configuration to
put on a 300mm substrate when using near-reticle sized dies)
configurations, resulting in 16, 32, and 48 accelerators in a
node, with inter-node bandwidths equal to 12, 20, and 24 times
the off-chip bandwidth of a single accelerator, respectively.
This is because not all accelerators are on the edge of the
communication substrate, so not all accelerators are connected
with a dedicated fiber attachment. The performance increases
because more TP is used compared to DP, so the effective
minibatch size increases, hence the accelerators compute more
efficiently. Overall, Opt. 2 results in 29% higher performance
when using 48 accelerators in a node compared to 8, on top of
Opt. 1. The figure also shows the effect of Opt. 3: when using
the advantage of the optical communication substrate, off-chip
bandwidth can be increased for future accelerator designs.
Bars 6 and 7 in Fig. 11 show how doubling and quadrupling
the off-chip bandwidth increases system performance by 54%
and 110%, respectively, for a system with 48 accelerators per
node that already benefits from Opt. 1 and Opt. 2. Note that
computation time still remains the same, and starts to dominate
training time for systems with high bandwidth.

These three optimizations together result in vast perfor-
mance improvements for distributed deep learning training
systems, up to almost 4× the performance of the reference
system, without increasing the peak computational ability of
the accelerator.

IX. CONCLUSION

In this work, we proposed AMPeD, an analytical model for
performance in distributed training of transformers. AMPeD
provides the users with multiple tunable knobs, such as all the
transformer model parameters, potential parallelism choices
(along with their mapping onto the system), and the accel-
erator as well as system architecture specifications, thereby
enabling hardware-software co-design. We demonstrated the
capability of AMPeD by providing insights into the training
time of transformers on current and future distributed system
architectures with the help of 3 case studies. For example,
we show how future distributed systems utilizing optical com-
munication substrates pave the way to more efficient training
of large models, with up to 4× more performance than the
current state-of-the-art systems without modifying the peak
computational power of the accelerators. Finally, we validate
the predictions from AMPeD with experiments on real systems
and via published data, demonstrating a maximal error of 12%.

Furthermore, AMPeD can be easily extended for hetero-
geneous accelerators. Here, we incorporate the impact of
memory constraint using the fitting function for microbatch
efficiency. In the future, we plan to develop a comprehensive
model to incorporate the memory constraints in the predic-
tions.

9

REFERENCES

[1] G. V. Research. (2022) Deep learning market size,2022 - 2030. [Online].
Available: https://www.grandviewresearch.com/industry-analysis/deep-
learning-market

[2] S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying bert:
System design implications,” in 2022 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 2022, pp. 296–309.

[3] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S. Chao,
“Learning deep transformer models for machine translation,” arXiv
preprint arXiv:1906.01787, 2019.

[4] U. Naseem, I. Razzak, K. Musial, and M. Imran, “Transformer based
deep intelligent contextual embedding for twitter sentiment analysis,”
Future Generation Computer Systems, vol. 113, pp. 58–69, 2020.

[5] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” arXiv preprint arXiv:2005.08100,
2020.

[6] Z. Shaheen, G. Wohlgenannt, and E. Filtz, “Large scale legal text clas-
sification using transformer models,” arXiv preprint arXiv:2010.12871,
2020.

[7] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and
C. Schmid, “Vivit: A video vision transformer,” 2021. [Online].
Available: https://arxiv.org/abs/2103.15691

[8] D. Narayanan et al., “Efficient large-scale language model training on
gpu clusters using megatron-lm,” in SC, 2021.

[9] X. Wang, Y. Xiong, X. Qian, Y. Wei, L. Li, and M. Wang, “Lightseq2:
Accelerated training for transformer-based models on gpus,” arXiv
preprint arXiv:2110.05722, 2021.

[10] J. Choquette, “Nvidia hopper gpu: Scaling performance,” in 2022 IEEE
Hot Chips 34 Symposium (HCS), 2022, pp. 1–46.

[11] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Performance and power
prediction for concurrent execution on gpus,” ACM TACO, vol. 19, no. 3,
pp. 1–27, 2022.

[12] Y. Zhang, Z. Zheng, and M. R. Lyu, “Real-time performance prediction
for cloud components,” in IEEE ISORCW. IEEE, 2012.

[13] H. Bouzidi, H. Ouarnoughi, S. Niar, and A. A. E. Cadi, “Performance
prediction for convolutional neural networks on edge gpus,” in ACM
CF, 2021.

[14] E. Gianniti, L. Zhang, and D. Ardagna, “Performance prediction of gpu-
based deep learning applications,” in SBAC-PAD. IEEE, 2018.

[15] S. Lym, D. Lee, M. O’Connor, N. Chatterjee, and M. Erez, “Delta: Gpu
performance model for deep learning applications with in-depth memory
system traffic analysis,” in IEEE ISPASS, 2019.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.
[Online]. Available: https://arxiv.org/abs/1706.03762

[17] S. Rajbhandari et al., “Zero: Memory optimizations toward training
trillion parameter models,” in SC. IEEE, 2020.

[18] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional
computation and automatic sharding,” arXiv preprint arXiv:2006.16668,
2020.

[19] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and
scalability optimization of distributed deep learning systems,” in ACM
KDD, 2015.

[20] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” OpenReview, 2016.

[21] X. Y. Geoffrey, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A
{Runtime-Based} computational performance predictor for deep neural
network training,” in USENIX ATC 21, 2021.

[22] S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna, “Astra-sim: En-
abling sw/hw co-design exploration for distributed dl training platforms,”
in IEEE ISPASS, 2020.

[23] Nvidia. (2022) Optimizing linear/fully-connected layers. [Online]. Avail-
able: https://docs.nvidia.com/deeplearning/performance/pdf/Optimizing-
Linear-Fully-Connected-Layers-User-Guide.pdf

[24] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2018.

[25] M. Yu, Y. Tian, B. Ji, C. Wu, H. Rajan, and J. Liu, “Gadget: Online
resource optimization for scheduling ring-all-reduce learning jobs,”
arXiv preprint arXiv:2202.01158, 2022.

[26] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “Gpipe: Efficient training
of giant neural networks using pipeline parallelism,” arXiv preprint
arXiv:1811.06965, 2018.

[27] A. Karpathy, “mingpt, a pytorch re-implementation of gpt,
both training and inference.” 2022. [Online]. Available:
https://github.com/karpathy/minGPT

[28] C. Kim, H. Lee, M. Jeong, W. Baek, B. Yoon, I. Kim, S. Lim, and
S. Kim, “torchgpipe: On-the-fly pipeline parallelism for training giant
models,” 2020. [Online]. Available: https://arxiv.org/abs/2004.09910

[29] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[30] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast
mixture-of-expert training system,” arXiv preprint arXiv:2103.13262,
2021.

[31] Z. Ma et al., “Bagualu: targeting brain scale pretrained models with over
37 million cores,” in PPoPP, 2022.

[32] Nvidia. (2020) Nvidia a100 tensor core gpu architec-
ture. [Online]. Available: https://images.nvidia.com/aem-dam/en-
zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[33] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[34] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[35] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[36] N. C. Harris, D. Bunandar, A. Joshi, A. Basumallik, and R. Turner, “Pas-
sage: A wafer-scale programmable photonic communication substrate,”
in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022, pp. 1–26.

[37] J. Van Campenhout, “Silicon photonics technology for terabit-scale
optical i/o (invited),” in 2021 ACM/IEEE SLIP, 2021.

[38] M. Moralis-Pegios, S. Pitris, C. Mitsolidou, K. Fotiadis, H. Ramon,
J. Lambrecht, J. Bauwelinck, X. Yin, Y. Ban, P. De Heyn et al., “Silicon
circuits for chip-to-chip communications in multi-socket server board
interconnects,” IET Optoelectronics, vol. 15, no. 2, pp. 102–110, 2021.

[39] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat et al., “Glam: Efficient scaling of language
models with mixture-of-experts,” in ICML, 2022.

10

