
Hardware-Assisted Mechanisms to Enforce Control
Flow Integrity: A Comprehensive Survey

Sandeep Kumar
School of Information Technology, IIT

Delhi
sandeep.kumar@cse.iitd.ac.in

Diksha Moolchandani
School of Information Technology, IIT

Delhi
diksha.moolchandani@cse.iitd.ac.in

Smruti R. Sarangi
Computer Science and Engineering,

IIT Delhi
srsarangi@cse.iitd.ac.in

Abstract
Today, a vast amount of sensitive data worth millions of
dollars is processed in untrusted data centers; hence, the
confidentiality and integrity of the code and data are of para-
mount importance. Given the high incentive of mounting
a successful attack, the complexity of attack methods has
grown rapidly over the years. The attackmethods rely on vul-
nerabilities present in the system to hijack the control flow
of a process and use it to either steal sensitive information
or degrade the quality of service.
To thwart these attacks, the complexity of the defense

methods has also increased in tandem. Researchers have
explored different methods to ensure the secure execution
of an application. The defense methods range from software-
only to hardware-only to hybrid defense methods.

In this survey, we focus on the relatively new hybrid form
of defense methods where software and hardware work
in tandem to protect the control flow of applications. We
present a novel three-level taxonomy of these defense mech-
anisms based on first principles and use them to classify
existing defense methods. After presenting the taxonomy,
we critically analyze the proposed defense methods, study
the evolution of the field and outline the challenges for future
work.

Keywords control flow integrity, hardware-assisted secu-
rity, code reuse attacks, control flow bending attacks

1 Introduction
Today, security has become a first-class design criterion for
all computer systems. Many such systems, ranging from
smartwatches to personal desktops to large data centers
store and process sensitive information related to finance,
health, public records and even relationships. Consequently,
the stakes are much higher, and any security flaws in these
systems/applications can lead to losses amounting tomillions
of dollars.
The complexity of attacks has gone up in the past few

years mainly due to the emergence of sophisticated tech-
niques and stronger financial incentives. These attacks target
different aspects of a process’s life cycle and steal sensitive
information or disrupt service. The defense methods have
managed to keep pace with these attacks; most attacks are
patched within a few weeks of their detection.

Functions

Function
calls

Sub-
modules

Figure 1. A control flow graph for OpenSSL. The vertices
are functions in the application and the edges between two
vertices represents a direct function call.

Along with these periodic patches, software vendors have
also taken more proactive steps. Researchers in industry
and academia have developed a plethora of defense methods
anticipating sophisticated attacks. Our analysis shows that
even though the final goal is the same –maintain control flow
integrity – there is a wide variance in the design of defense
methods. Hence, it needs to be an active area of study because
the quest to minimize performance and energy overheads
without compromising on security will always remain.

Before discussing the defense methods, we need to for-
mally define what it means for an application to be secure in
the context of this paper. We shall only focus on the control
flow integrity or CFI. The term CFI was initially introduced
by Abadi et al. [7]. It means that the execution of a binary
should follow a path that is pre-determined by its input
parameters. Given that the execution path consisting of dy-
namic instructions is typically very long and has a lot of
loops, it is typically represented as a control flow graph or
CFG where the nodes are functions, and the edges between
the nodes are the function calls (see Figure 1 for an example).
The CFG of an application is typically generated at runtime
by collecting execution traces. We can alternatively define
a static variant of the CFG that is independent of runtime

1

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Hardware-
based

defense
methods

Hardware-
assisted

Software-
based

defense
methods

CFI
attacks Scope:

Side-channel
ttacks

Malware
attacks

Attack space Defense space

Scope:

Figure 2. Scope of this survey: We focus on hardware-
assisted defense mechanisms for protecting the CFI of a
program

parameters and simply captures the function calls embed-
ded in a binary (can be created using static analysis). Abadi
et al. [7] argue that tampering with the execution flow of
an application is the essential step in most attacks. Hence,
ensuring the CFI of an application is of paramount impor-
tance. CFI has been used widely in prior work [32], and we
also use it as the basis for selecting defense methods for our
analyses.

Due to the sheer number of defense methods, classifying
them is a non-trivial task. Collectively, these methods work
on every aspect of a process’s life cycle and leverage all
possible hardware support available to them.
Hence, we faced the need to come up with a novel tax-

onomy that is based on the impact of the defense methods
(more details in Section 4). Doing so provides us with mu-
tually exclusive sets of defense methods that capture the
high-level structure of the entire research field.

1.1 Scope of the survey
The attack and defense methods are constantly in an arm’s
race. Their degree of sophistication keeps increasing over
time. The most basic approaches in this space are software-
based methods. However, such a method can be bypassed
if the attacker has physical access to the machine [17, 57]
or can leverage other OS or HW-level vulnerabilities. An-
other negative aspect of such methods is their high perfor-
mance overheads mainly due to the constant monitoring
and additional security checks. Hence, hardware-based secu-
rity methods have gained traction in the past few years. A
hardware-based method has a lower performance overhead,
provides a reliable root of trust and makes it much harder
for SW-based attacks to be successful. However, a hardware
feature takes years to be production-ready, as it has to go
through many rounds of design and validation.

Therefore, a hybrid approach combining the efficiency and
security of existing hardware mechanisms with the flexibility
of software is preferred. Hardware exposes generic features
that can be leveraged in very intelligent ways. Hardware
modules often collect process telemetry data, and software

modules process it to detect anomalous behavior. In this
survey, we shall focus on such hardware-assisted defense
methods (refer to Figure 2). It is a rapidly growing field and
is expected to become more prominent in the near future.
A hardware-assisted or hybrid method provides the flex-

ibility of software-based methods and the efficiency and
security of hardware-based methods. Moreover, we shall fo-
cus on violations of the CFI property where attacks operate
by hijacking the control flow with a malicious intent. Note
that pure hardware or software-based approaches will not
be discussed this survey paper. A few disclaimers are due.
Due to a lack of space, we shall not delve into the details

of how particular hardware features are implemented, the
challenges faced by the hardware developers, or how they
affect the pipeline of a processor. For a detailed analysis
of the inner workings of hardware features, we refer the
reader to the work done by de Clercq and Verbauwhede [32]
and Coppolino et al. [24]. We instead focus on the challenges
a security researcher or developer faces such as selecting
the right hardware for her needs, configuring it, designing a
solution around it, and maneuvering through the challenges
or limitations introduced by the hardware.
There is some related work in this area. The work done

by de Clercq and Verbauwhede [32] and Coppolino et al. [24]
elaborated on many such hardware features and discussed
their design and operation in detail. However, both the ref-
erences do not discuss specific defense methods and where
these features are used. Furthermore, they also leave out
certain technologies such as hardware-provided trusted exe-
cution environments, or TEEs, which have been extensively
used in providing security to applications in cloud environ-
ments. Other works in this area suffer from similar limita-
tions such as being restricted to a specific class of attack
methods, a specific field ([45]), or a specific class of defense
methods ([51, 64]). Our survey paper distinguishes itself on
the basis of its comprehensive coverage and the connections
that it makes between hardware features and software-based
defenses that leverage them. The latter aspect is the key
novelty of this paper.

1.2 Organization of the paper
The rest of the paper is organized as follows. We discuss
the relevant background in Section 2. This is followed by
a discussion on the related work in this area in Section 3.
After this, we present our novel taxonomy of the hardware-
assisted defense methods in Section 4, followed by a detailed
discussion in sections 5, 6, and 7. We provide remarks on the
general trend of the work done by the defense community
and point out the gaps that need to be filled by the upcoming
work in Section 8. Finally, we conclude in Section 9.

2

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

1 int a[] = new int [100];

2 //Error: IndexOutOfBoundsException

3 a[200] = 10;

Listing 1. Example of a safe programming language (Java)

1 int a[100];

2 //This is allowed. No error

3 a[200] = 10;

Listing 2. Example of an unsafe programming language
(C++)

2 Background
In this section, we shall discuss the relevant background
required for the rest of the paper.

2.1 Safe and unsafe languages
Today, a developer has many choices for the programming

language that needs to be used. Examples include C, C++,
Java, Python, Rust, Scala, Kotlin, etc. The decision to select a
programming language is based on the ease of programming
and runtime efficiency. For example, a developer writing an
“app” for a mobile device will probably use Java or Kotlin (in
Android). Using C++ for such a task will be unnecessarily
cumbersome. However, any application that is performance-
sensitive will need to be written in C or C++.
Sadly, this performance improvement comes at a cost.

One of them is no explicit memory address checking before
accessing a memory location. As shown in Listing 1, an array
access beyond its bounds will result in an error in Java (a
safe language). However, doing so in C++ is allowed – it will
lead to an erroneous result, nevertheless it is permissible (see
Listing 2).

The first step for any attack on the CFI of an application is
to corrupt the memory state of that process. In the absence
of explicit memory validations, an attacker can overwrite a
process’s stack (explained later in Figure 4) or other control
data structures and hijack the application’s control flow. This
attack is known as a buffer-overflow attack and is the basis
for other more sophisticated attacks (details in Section 2.2).
In safe languages, such kinds of memory corruption attacks
are either not possible or difficult to mount. Sadly, there is a
concomitant performance cost.

2.2 Attacks on control flow integrity
In this section, we present a brief overview of the attacks on
the CFI of a binary. Note that this is not a comprehensive list.
We shall discuss the basic ideas on which these attacks are
based (see Figure 3). The exact implementations may vary.

1 void foo(){

2 char buff [4]; // Stack variable

3 printf("Input: ");

4 gets(buff); // Storing on the stack

5 }

6

7 int main(){

8 foo();

9 return 0;

10 }

Listing 3. Sample Code to demonstrate buffer overflow
attack

Attacks on
CFI

ROP

Code bending
attacks

Code reuse
attacks

JOP

Data only
attacks

Code injection
attacks

Figure 3. Attacks on the control flow integrity or CFI of an
application

NO Stack overflow

Stack frame
for main()

Function arguments

0B 04 B4 27

BF EA 2F D8

A A A A

(a) Input fits in the buffer

Stack frame
for main()

Function arguments

0B 04 B4 27

BF EA \0 A

A A A A

Stack overflow

(b) Input does not fit in the buffer

Figure 4. Example of a buffer overflow attack on the code
shown in Listing 3

2.2.1 Code injection attacks
Code injection (CI) attacks exploit the lack of memory checks
to mount an attack. First, a CI attack corrupts the stack of a
process by overwriting parts of it with malicious data. For
example, Listing 3 shows a process that asks the user for
an input and stores it on the stack. Figure 4a shows the

3

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

A

B

C D

A

B

C D

Intended
Execution

Gadgets{
Intended
Execution

Control
Diverted

Control
Hijacked

(b) Code reuse attack (c) Control flow bending attack

A

B

C D

Intended
Execution

Attacker
provided

code { Control
Hijacked

(a) Code injection attack

Figure 5. Code injection, code reuse and control flow bend-
ing attacks

application stack when a valid input (fits in the buffer) is
provided; now compare it with Figure 4b when an invalid
(size more than the buffer) input is given. In the latter case,
the stack of the process can get overwritten with the extra
data provided by the user. This generally leads to a process
crash since overwriting the stack may result in corrupting
the return address (stored on the stack). It is possible to
meticulously craft the input such that the return address
points to a location within the stack.
Now, the attacker can insert her own code in the stack

(again via specially crafted inputs). Once the function returns,
the control will jump to the return address. The code injected
by the user will get executed. It can be used to leak sensitive
data, change the application’s control flow, or launch more
attacks. These new instructions add new nodes (functions or
basic-blocks) in the control flow of the application (see Fig-
ure 5a). Nowadays, these attacks are prevented by ensuring
that a data page is either writable or executable, but never
both. This protection mechanism is known as data execution
prevention or DEP (also referred to as the𝑊 ⊕ 𝑋 property)
and is part of all modern operating systems.

2.2.2 Code reuse attacks
The protection provided by DEP ensures that an attacker
cannot execute any malicious code by overwriting the stack
of an application. However, it does not prevent overwriting
the stack per se using the buffer overflow technique. An
attacker can use the same method to divert the control flow
of the application to the attacker-intended locations rather
than the developer-intended locations. The basis of this attack
is that an attacker has access to the binary or can probe the
address space of the application to find code fragments that
end in an indirect branch statement such as ret. Such code
fragments are called gadgets and multiple gadgets can be
chained together to execute a piece of malicious logic. This
attack is known as the code reuse attack or CRA because it
relies on code snippets that are already a part of the binary.
Figure 5(b) shows a CRA attack where a chain of gadgets is
executed.

A CRA attack can be mounted on the forward-edges (con-
ditional branch statements) of a control flow graph or on the
backward-edges (return statements). The former is known
as a jump oriented programming attack or JOP attack, and the
latter is called a return oriented programming attack or ROP
attack. As of today, these are one of the most powerful set of
attacks that can be mounted on the CFI of a binary. The sheer
number of branch statements executed by an application
makes it difficult to prevent a CRA attack without incurring
unacceptable performance overheads. Furthermore, a CRA
attack is hard to detect as it relies on the code fragments
already present in a process’s address space instead of re-
quiring the insertion of new code. The standard approach
here is to analyze the execution and check for an anomalous
sequence of executed code (in the form of gadgets).

2.2.3 Control flow bending attacks
A CRA attack is powerful and hard to detect. However, it
augments the control flow of an application. The malicious
code executed by the attack shows up as entirely different
pathways in the control flow of an application. Apart from
this, the number of branch instructions executed (ret,jne)
increases compared to the default execution. These proper-
ties are used by defense methods to detect these attacks by
using “signature-based” schemes.
A control flow bending attack or CFB attack uses a single

branch flip to break the CFI property of an application (see
Figure 5c). Compared to a CRA attack, a CFB attack does
not augment the original control flow graph – it does not
add any new branches to the control flow, it just reuses the
existing branches. It uses conditional branch instructions
like jne for this purpose. A conditional branch instruction
decides the path taken based onwhether a condition is met or
not. For example, in a license check module, the application
may choose to execute or quit depending on whether a valid
license is provided or not, respectively. This decision boils
down to a single conditional branch. A CFB attack hijacks
the control flow of a process by forcing it to take a fixed path
in the control flow graph, irrespective of whether the branch
condition is met or not [17, 57]. Since a CFB attack does not
add new paths to the control flow graph, detecting it is very
challenging [41].

Both, CRA and CFB attacks are Turing complete [17], that
is, an attacker can use either of them to execute any arbitrary
logic.

2.2.4 Data oriented programming attacks
Apart from the previously explained attack methods, a new
class of attacks indirectly violates the control flow integrity
of an application. This class of attacks is known as data
oriented programming, or DOP attacks.
The address space of an application can be logically di-

vided into two planes: the control and the data plane [50].
The control plane consists of pointers, instructions, etc., that

4

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

control the execution flow of the application. On the other
hand, the data plane consists of data variables that are not
a part of the control decisions in the application. The pre-
viously described attacks were based on the control plane,
where an attacker attempts to hijack the control flow by
influencing the process of jumping to a new location. A DOP
attack modifies the variables that decide the control flow
of an application, such as a variable being checked in an if
statement.

Hu et al. [50] show that a Turing-complete attack can also
be mounted using just the variables present in the data plane.
These attacks are also known as non-control attacks [50]. We
include them in the scope of the paper as an attacker can use
DOP attacks to violate the CFI property of an application.

Apart from these classes of attacks, there is a new category
of attacks where instead of directly attacking the binary,
the attacker observes the effect of the execution of a binary
on the system state, such as the branch predictors, shared
caches, power usage, page faults, etc. This information is
then used to leak sensitive information by the attacker. Here,
an attacker violates the security guarantees by observing
the state of these system components. The attacker can infer
secrets within the protected region without root-level access.
Over the past few years, this line of thinking has matured sig-
nificantly, and many different variants have surfaced includ-
ing but not limited to the prime+probe attack, flush+reload
attack, and evict+time attack [55, 59, 72, 77, 105].

2.3 Hardware advancements
As explained before (see Section 1.1), we only focus on
hardware-assisted defense mechanisms. Hence, in this sec-
tion, we provide a brief overview of different hardware fea-
tures that a defense method can use. This is not an exhaustive
list, and we only focus on the hardware features prominently
used for CFI protection. These features are typically generic
in nature that different methods can use for different pur-
poses. For example, the hardware PMU (performance moni-
toring unit) counters can be used while a binary is executing
to either monitor it or collect it and validate it later.

2.3.1 Trusted execution environment or TEE
Modern CPUs have a provision for executing the instructions
of a binary securely. They are even protected from privileged
software such as the operating system and hypervisor. This
secure environment is called a trusted execution environment
or TEE. A TEE defines a secure region within the chip and
guarantees integrity, confidentiality, and freshness of the data
and code in it. The confidentiality property implies that
the protected content will not be accessible to an untrusted
malicious entity; the integrity property says that a malicious
entity cannot change the protected content without being
detected; the freshness property ensures that an attacker

(a) Intel SGX [3]

Rich OS Trusted OS

TEE Client API TEE Internal API
TEE functional API

Normal
apps

Apps with
secure OS

support

Trusted
apps

Trusted
apps

Monitor

Rich execution environment Trusted execution environment

(b) ARM TrustZone [6].

Figure 6. Two trusted execution environments or TEE solu-
tions from Intel and ARM, respectively.

cannot replay an older version of data without detection.
A TEE also allows a user to verify that her application is
executing without any tampering on a remote, untrusted
machine. Here, we briefly discuss two of the most popular
TEE solutions: Intel SGX [3] and ARM TrustZone [6] (see
Figure 6).

Intel SGX: Intel Software Guard eXtension or SGX [26] is
a TEE solution from Intel. It is a collection of a set of new
instructions and hardware mechanisms that allow the appli-
cation to execute securely inside a sandboxed region called
an enclave. Intel SGX at boot time reserves a part of the mem-
ory called processor reserved memory (PRM) for its secure
operations. As of now, the size of the PRM is mostly limited
to 128MB (256MB in a few systems) and is managed by a
hardware component called thememory encryption engine or
MEE. The MEE transparently ensures the confidentiality, in-
tegrity, and freshness of the data stored in the PRM. However,
this security comes at a performance cost. Since the operat-
ing system is not a part of the trusted code base, applications
executing within SGX are not allowed to issue direct sys-
tem calls. Furthermore, due to security reasons, applications
within SGX are not allowed to share memory within the
PRM. They can share memory in the untrusted region of the
main memory. Costan and Devadas [27] present a detailed
analysis of the working of Intel SGX in their paper [27].

ARM TrustZone: TrustZone is a TEE solution from ARM.
Its implementation differs significantly from Intel SGX in
spite of having similar features. TrustZone logically divides
the CPU into two worlds: secure and unsecure worlds. The
secure world comprises a secure OS, secure firmware, and
secure I/O (which can only be accessed by the code running
in the secure world). The isolation guarantee that separates
the secure and non-secure worlds is ensured by the hardware.

5

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

1
2

3

4

5

n-3

n-2

...
... ...

Jump
branchCPU

Circular log

Figure 7. Last branch record or LBR

Trace

Block

Encoded

Branch

Trace

Decoder

Decoded

Branch

Trace

Runtime

Data

CPU

Figure 8. Collecting the branch trace on Intel processors.
Adapted from [65]

The memory buses are also augmented to support TrustZone
features.

2.3.2 Hardware-assisted instrumentation
Dynamic instrumentation of a process is a well-known tech-
nique to debug or optimize performance. Here, an appli-
cation is profiled during execution to gain an insight into
its working. The instrumentation can be done at the level
of functions, basic blocks, or instructions. The instrumen-
tation process can also be used to prevent an application
from a CFI attack by validating the forward (indirect jumps)
and the backward branches (return instructions). However,
software-based instrumentation incurs unacceptably high
performance overheads [94] due to the sheer number of
events generated.
To remedy this situation, modern hardware provides dif-

ferent ways to instrument a process effectively.
The control flow of an application is determined by the

branches taken by the application while executing. The in-
formation about the branches taken can be used to debug,
optimize, and also validate the execution of the application.
Modern Intel processors have a feature called last branch
records or LBRs [56] that allow the logging of the branches
taken by an application in special registers. As shown in Fig-
ure 7, the number of registers to log the branch information
is limited and is organized as a ring buffer. This allows the
system to analyze a branch in a “context” by observing the
branches taken before or after it.
The LBR only captures the outcomes of the branch in-

structions taken by an application. However, sometimes we
might need more information. Intel processor trace or IPT

(see Figure 8) enables efficiently capturing the trace of a pro-
cess. In order to reduce the overhead, IPT stores the trace
in an encoded format and skips the information that can
be generated from other recorded data. The encoded data
can be decoded offline and processed as a regular trace. IPT
incurs a 15% less performance overhead than the correspond-
ing software-based methods [36, 42, 52, 65]. Specifically, IPT
records branch information, system information, details of in-
terrupts received, transaction entry/exits, and VM entry/ex-
its.

2.3.3 Pointer integrity
All the attacks on the CFI of an application rely on “trick-
ing” the system to use an attacker-crafted pointer instead of
the original pointer. In an ROP attack, the attacker modifies
the pointer containing the return address value. In a JOP
attack, the attacker modifies the pointer containing the tar-
get address of an indirect branch. ARM introduced pointer
authentication that ensures that only valid addresses can be
used. Any attempt to use a modified pointer will result in an
application crash. To achieve this, an encrypted signature is
associated with every pointer. This signature is verified be-
fore using the pointer. The signature is generated using a key
that is not accessible from user space, the pointer itself, and
the current value of the stack pointer. As the attacker will not
have access to the key, she cannot generate a valid signature.
The signature is calculated using an instruction called PUC
and is stored in the unused bits of the 64-bit pointer. The
validation is done using an instruction called AUT [25, 93].

2.3.4 Memory accessibility
Apart from effective ways to instrument binaries, innova-
tions in the memory system make it hard for attackers to
leak information. Industry and academia have also come up
with complete memory encryption solutions. The encryp-
tion and decryption operations are carried out in hardware
to make them more efficient. Intel SGX [26] offers, for exam-
ple, offers partial encryption of the physical memory space.
In this case, a part of the main memory is encrypted and
is used for an application running within an SGX enclave.
The reserved part of the memory is called the PRM, and the
usable part of it is referred to as the enclave page cache or
EPC (see Figure 9). AMD recently launched secure memory
encryption or the SME technology [54] that offers complete,
hardware controlled, memory protection (primarily relies
on encryption of data stored in memory).
Apart from encryption, Intel memory protection keys or

MPK provides a mechanism to divide and separately manage
the address space. Traditionally, bits in the page table en-
tries are used to control the properties of the page (writable,
executable, etc.). In Intel MPK, 4 unused bits in the page
table entries are used to assign one of sixteen keys to each
page. Apart from this, the processor contains a 2-bit regis-
ter for each of the sixteen keys. A value of 0 in the register

6

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

DRAM

PRM

PRM

EPC

EPC

4KB page

4KB page

4KB page

4KB page

Figure 9. Overview of Intel SGX.

Clock

Config
Register

Counter
0x00000

Caches

F D E W

Pipeline

Branch predictor

Figure 10. Use of dedicated registers in a traditional
pipeline [12].

of a particular key will disable access to all of the pages
that are assigned that key. This is used to divide the address
space into different regions (up to sixteen) and manage them
independently.

2.4 Hardware-accelerated instructions
Traditionally, a microprocessor was designed to optimize
integer and floating-point operations. However, with the
ever-evolving nature of the field, the workloads are becom-
ing increasingly complex, and hence, themicroprocessors are
required to perform complex tasks. For example, common
cryptographic operations such as encryption, decryption,
and hashing are executed very frequently in these systems.
A common approach to performing these operations is to
break down these complex tasks into their basic mathemati-
cal operations. However, this causes a significant wastage
of CPU cycles and a resulting slowdown in performance.
Hence, there is a case to be made for hardware-accelerated
cryptographic operations, where hardware developers pro-
vide dedicated instructions for standard cryptographic oper-
ations [35]. To this end, Intel has released dedicated instruc-
tions for encryption [1] and hashing [82].

Advantages: These instructions provided a performance
improvement of up to 4× for encryption [47] and 4.6× for
hash-based operations.

2.5 Hardware performance counters
Modern hardware has a mechanism to get access to low-level
micro-architectural events such as the number of TLB hits
and misses, L1 hits and misses, total cycles, total stall cycles,
etc., in an application’s execution [12]. This is achieved by
additional programmable and dedicated registers that store
the number of occurrences of specific events (see Figure 10).
Though there are a fixed number of hardware registers, there
is no limit on the number of events that can be sampled due
to the multiplexing feature of the performance counter hard-
ware [78]. While multiplexing, each event is sampled in a
round-robin manner. This reduces the precision of counting,
but increases the number of events that can be sampled at
the same time. These registers are populated by the hard-
ware during the execution of an application, incurring a
minimal overhead while doing so. The values of these coun-
ters provide insights into the characteristics of a particular
application’s execution and can be used to debug, optimize,
or sometimes even ensure a valid execution.

Advantages: In the absence of hardware performance coun-
ters, the burden of tracking events falls on the operating
system or the hypervisor. There are two major drawbacks of
doing so: ❶ Any software-level entity will not have access to
the fine-grained micro-architectural events such as L1-hits
and misses. ❷ Even if we somehow enable access to capture
those events, the executing process has to be continuously in-
terrupted; we need to transfer the context to the OS, capture
the relevant metric, and return control to the process. This
context switching will incur a huge performance overhead,
as seen in software-only solutions. Hardware performance
counters eliminate all these issues and enable seamless track-
ing of performance metrics of a process.

2.6 RISC-V
RISC-V is an open-source ISA that has gained popularity as
it does not require a license to use it. Due to its open-source
nature, it enables security researchers to do a more detailed
analysis of it. However, at the same time, it also allows attack-
ers to find vulnerabilities in it easily. Hence, developers are
working towards providing a root-of-trust (a trusted entity)
for RISC-V to prevent attacks on it. In this paper (see Sec-
tion 6.5), we take a brief look at these techniques. For a more
detailed analysis, readers should look at the work by Lu [67].
In Section 6.5, we discuss more proposals [11, 71, 101].

The hardware space is seeing a rapid development of fea-
tures that address various challenges such as performance,
ease of development, and security challenges that modern
applications face (see Table 1). The defense community is
increasingly adopting them to provide more efficient protec-
tion.

7

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Table 1. Table showing a brief description of hardware features along with its use cases, overheads, and implementation
details.

Feature Purpose Overheads Implementation
TEE Trusted Execution
Environment [3, 6]

Secure containers
in clouds

Encryption and integrity
checks. OS interactions

There is a dedicated memory encryption engine, which en-
crypts all the traffic between the CPU and memory. For ensur-
ing data freshness, they use a Merkle tree, where the root of
the tree is stored in the TCB.

HW Counters [102] In-depth informa-
tion about execu-
tion

Negligible These are regular registers that store different performance-
related data such as L1 misses, TLB misses, etc.

Memory Encryption [3,
54]

Encrypted memory
(TME, AMD Epyc)

A few cycles for every mem-
ory access

Just encrypts the memory and does not perform any integrity
checks.

HW-accelerated Instruc-
tions [89]

AES, SHA Minimal These are additional instructions in the ISA. They significantly
accelerate the execution of encryption and hashing operations;
the latency is at the most 10-20 cycles.

Last Branch Record [56] Control flow gener-
ation

An additional circular buffer. A simple circular queue that stores the details (PC, outcomes)
of the last 𝑘 branches.

Intel Processor Trace or
IPT [52]

Trace Encoding and Decoding Extends the previous idea to have a larger, circular queue that
stores branch, interrupt, and VM entry/exit information.

Pointer integrity [74] Pointer
authentication Encryption tag with every

pointer. Software changes.
A base and bound attached with every pointer (optionally a
signature). This is checked by hardware periodically or upon
the return of a function to validate the CFI.

Random Number Gener-
ation/ PUF [5]

Generate unique
encryption keys

Small hardware units TRNG generators based on physical phenomena or pseudo-
random number generators. The random numbers are used to
generate unique, per-session encryption keys for authentica-
tion.

Table 2. Related survey papers

Name Year Description
A survey of Hardware-based Control Flow
Integrity. de Clercq and Verbauwhede [32]

2017 Pure hardware
defense
methods

A survey on security threats and defensive
techniques of machine learning: A data
driven view. Liu et al. [64]

2018 Defense
methods with

machine
learning.

A comprehensive survey of
hardware-assisted security: From the edge
to the cloud. Coppolino et al. [24]

2019 List of
hardware-
assisted
features

A Survey on IoT Security: Application
Areas, Security Threats, and Solution
Architectures. Hassija et al. [45]

2019 IoT related
defense
methods

Survey of Attack Projection, Prediction,
and Forecasting in Cyber Security. Husak
et al. [51]

2019 Cyber security
forecasting

A Survey of Exploitation Techniques and
Defenses for Program Data Attacks. Wang
et al. [100]

2020a Data attacks

Hardware-assisted CFI defense mechanisms:
A Comprehensive Survey (this work)

2022 Hardware-
assisted defense
mechanisms.

3 Related work
As already mentioned, many attack and defense methods
have been formulated in the past decade.Many survey papers
have aimed to characterize and classify them. Table 2 shows

the scope of other surveys in this field and compares them
with this survey.

The work done by de Clercq and Verbauwhede [32] is the
closest to our work. They focus on hardware-based defense
methods to prevent attacks on the CFI of an application. They
specifically focus on the prevention of code-reuse-attacks
and discuss the work done by the hardware community in
this direction. Examples include a hardware-based shadow
stack, code-pointer integrity checks, and branch validations.
However, they leave out a few critical hardware features
such as secure execution mechanisms, specifically TEE (Intel
SGX [3] or ARM TrustZone [6]), hardware tags [81], and
heterogeneous ISAs [96]. A TEE explicitly violates one of the
assumptions made by the authors in the paper for attackers’
capabilities. The authors assume that an attacker can read
the memory contents. However, in a TEE setting such as Intel
SGX, a part of the memory (secure memory) is encrypted
by the hardware. Although an untrusted entity can read the
memory (by forcing a dump of either secure or unsecure
memory), she cannot decrypt the data as it is encrypted by
a key stored within the hardware. Intel SGX provides data
confidentiality, integrity, and freshness guarantees for the
data stored in the secure region of the memory – essentially
thwarting attacks that rely on data being present in plaintext
in the main memory.
Coppolino et al. [24] elaborately discussed the different

hardware-assisted mechanisms available that developers can

8

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Table 3. Differences between the work done by Coppolino
et al. [24] and this work.

Features Edge to Cloud [24] This Work
Description of HW features Yes Yes
Use cases No Yes
Defense model using HW features Unclear CFI
Discussion of defense methods No Yes

use to improve the performance of existing defense meth-
ods or develop new defense methods. However, they do not
discuss any work that potentially uses these features. Incor-
porating these hardware defense methods into a complex
software ecosystem is non-trivial. In fact, the main aim of
this survey is to elucidate the fact that most of the innova-
tion lies in effectively using the features that are provided
by hardware to ensure that the CFI can be verified efficiently
(with a minimal degradation in performance). Merely listing
the HW features is not enough. Showing how to use them is
important and in our humble view, merits a full survey.

For example, Intel SGX provides a secure sandbox for pro-
cesses to execute in isolation (without any fear of eavesdrop-
ping or tampering). However, it also imposes restrictions on
the application due to security considerations [2, 44, 53]. It
is also associated with large performance overheads [57, 63].
Hence, developers devise different methods to mitigate these
overheads. A detailed discussion of these methods is impor-
tant to completely understand the applicability of the hard-
ware feature, which is missing from this work. On the other
hand, our work covers all the popular hardware-assisted
mechanisms (ignoring a few, such as Intel TDT, as there is
insufficient public domain work). We focus on the applicabil-
ity of hardware-assisted features and briefly describe their
working in Section 2.3. The work by Coppolino et al. [24] can
supplement our work for readers interested in more details.
Table 3 lists the key differences between Coppolino et al. [24]
and this work.

Wang et al. [100] categorize defense methods that aim to
prevent data oriented programming or DOP attacks. They
use three categories in their classification: the first category
contains those methods that aim to fix a memory vulnera-
bility, the second category captures those methods that aim
to randomize the process layout, and the third category cap-
tures those defense methods that aim to dynamically prevent
attacks by actively monitoring the execution of a process.
However, they only focus on DOP attacks, leaving out other
forms of attacks such as code reuse attacks and control flow
bending attacks. Hassija et al. [45] capture defense methods
in the field of IoT. They specifically focus on techniques that
can be executed in a resource constrained environment and
are suitable for IoT devices.

Liu et al. [64] discuss ML-inspired defense methods. Ma-
chine learning (ML) and deep learning (DL) algorithms have
seen wide adoption in different fields in the past few years.

Following this trend, many attempts have been made to de-
vise “intelligent” defense methods powered by ML and DL
algorithms. The authors focus on the attacks that target the
training phase, inference phase, or data security in general.

Husak et al. [51] focus on the attacks and defense meth-
ods in cyber-physical (CP) systems with an emphasis on the
methods that aim to forecast or predict an attack. They clas-
sify these methods as discrete, continuous, machine learning
based, or based on pattern matching models.

4 Taxonomy
In this section, we present a novel taxonomy for hardware-
assisted defense methods.

4.1 Challenges
There are a plethora of defense methods that aim to protect
the CFI of an application by leveraging one or more hardware
features.

One approach for classifying them can be based on which
stage of the life cycle is targeted. There are different strate-
gies for protecting the source code, binary, executing process,
and the results generated by a process. Most of these defense
methods provide online protection to an executing applica-
tion by either monitoring the state of a memory region (e.g.,
stack) or by monitoring its impact on the system. Hence, a
classification strategy using this approach will place most of
the defense methods in the executing application category,
making it difficult to gain insights. Furthermore, there are
very few defense methods that focus on protecting or assert-
ing the validity of post-execution results. This is because the
defense methods in this category use an optimistic approach
by allowing the execution to go through and then process
the logs to detect attacks. This approach is not suitable for
many real-time and interactive applications.
Another approach can be based on which hardware fea-

ture is used. However, this also does not lead to an elegant
classification of the defense methods. As already mentioned,
a hardware feature takes a long time to become available
in commercial CPUs. It has to go through many years of
development and testing. Hence, software developers try
to leverage existing features to the hilt. As a result, a few
features get disproportionately used and thus the treatment
does not remain balanced.

4.2 Classification
To efficiently classify the defense methods, we propose to
classify them on the basis – which system is being affected/-
targeted. To this end, we propose a three-level of taxonomy:
binary-based, process-based, and system-based classification
(see Figure 11). These categories capture the impact of the
defense methods on the binary, process, and system in terms
of the modifications or observable effects, respectively. This
classification approach presents a balanced and intuitive

9

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Figure 11. A novel three-level taxonomy

way of categorization. For example, a developer that has
no control over how a binary will be executed in its tar-
get environment must look at the defense solutions in the
binary-based. A security developer proposing generic solu-
tions for applications has no control over binary creation
and the environment where it will be executed must look
at the process-based defense methods. A cloud provider has
no control over binary creation or the execution process.
However, she has full control of the environment where the
application will execute. In such scenarios, the system-based
defense methods make the most sense.

4.3 A binary-based classification
The defense methods in the this bucket [30, 34, 40, 63, 73,
83, 87, 99] work from the compilation of the application to
its loading in the main memory for execution. The key idea
here is to empower the binary to thwart off attacks during
execution or raise the bar for the attacker to mount a success-
ful attack. The set of defense methods consists of methods
that rewrite the binary (addition or removal of certain in-
structions), split the binary into secure and unsecure regions
and focus on the protection of the former and randomize the
location of the binary’s memory regions within the virtual
address space.
Certain defense methods in this class work directly on

the source code and propose changes to the compiler for
including additional checks in the generated binary. Many
approaches operate on the complete control flow graph and
ensure that it remains valid during an execution.

4.4 A process-based classification
Although the methods in the binary-based category have
access to the complete source code and other compiler-based
tools, they are limited in terms of what can be done to secure
a binary. The modifications to a binary have to take into
account its size, compatibility, and performance overheads.
Hence, the defense methods in the process-based level of
classification [16, 18, 22, 28, 37, 49, 61, 62, 69, 80, 81, 85, 88,

Table 4. The pre-execution class of defense methods.

Defense
method

Hardware
feature

Application
attribute

Perf. Attack
model

Method

Hafix [30] CFI Inst.
and CFI
Memory

Backward-
edge CFI

2% ROP Verification

OpaqueCFI [73] Intel MPX Inst. 4.7% ROP Randomization

Glamdring [63] Intel SGX Inst. 20% -
30%

CFI Binary splitting

RISC-V [34] HW key
genera-
tion

Inst. 0.7% ROP Randomization
& Encoding

SGXShield [83] Intel SGX Inst. 7.61% ROP Static
Randomization,
multi-stage
Loader

PolyGlot [87] ISR Inst. 4.6% DRA Encrypted
binaries

CFITrimming [40] SHA in-
structions

Trace &
Instruc-
tions

1.87% CRA Binary
stripping

HetroISA [99] Heterogeneous
ISA

Process
behavior

15% CFI Moving target
& Concurrent
execution

106, 108] are based on what specific property of a binary’s
execution – stack, kernel data structures, memory pointers,
and instructions – are protected.

4.5 A system-based classification
Finally, the third level of the taxonomy is based on the behav-
ior of the application and its impact on other OS and hard-
ware structures. A valid execution of a binary is associated
with a set of micro-architectural events (TLB misses, cache
misses, branches taken) andOS-level events (such as the num-
ber of system calls, interrupts, stack usage, and heap usage).
This behavior changes under an attack. The defense methods
in this category [10, 21, 29, 38, 46, 66, 68, 95, 97, 98, 104, 107]
observe the execution of the binary, and based on the ob-
served characteristics aim to detect an attack and take ap-
propriate measures to neutralize it. These defense methods
rely on the control flow, function calls, hardware counters,
branches taken, and the trace of an application.

5 Binary-based defense methods
The first category of defense methods is based on pro-active
defense. The defense methods in this category enable pro-
tection mechanisms in a binary before any attack on its CFI,
i.e., before its execution. They secure a binary by employing
different methods such as additional memory checks, adding
new instructions, and randomization during binary loading.
The defense mechanisms are based on a thorough analysis of
the attack methods, including their working, dependencies,
and limitations. Note that only those defense methods that
either modify the binary or finish their operation prior to

10

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Original Binary

Test suite

Traces

Conservative
diassembler

IRM writer

Trimming policy
(CCFG)

Policy learned

Trimmed Binary

Figure 12. Method for trimming down a binary [40].
Adapted from [40]

e3

e2 e1

e1 e3 e2 e2

Figure 13. A sample decision tree used by [40] to form a
contextual CFG. Adapted from [40]

the binary’s execution (for example, layout randomization)
are classified as binary-based defense methods (see Table 4).

5.1 Binary re-writing
We start with the methods that take an unmodified binary as
an input and return a modified version that is more resilient
to CFI attacks. The class of code reuse attacks (CRA attacks)
rely on the presence of particular instructions in the binary
to mount an attack (indirect branches). As explained earlier,
they use offline processing to find code fragments that end
in an indirect branch statement (gadgets). Finding gadgets
is not hard in modern applications as they are complex in
nature and have many complex code fragments (thus plenty
of indirect branch statements).
However, these complex features are meant for a wider

audience, and typically, a single user does not use all of them.
Nevertheless, since these code fragments are a part of the
binary, they can be maliciously executed. They can benefit
a CRA attacker. The defense methods in this sub-category
aim at removing or replacing such instructions from the
binary, concomitantly ensuring that the binary’s logic does
not change. Doing so raises the bar for mounting a successful
attack.
Following this idea, Ghaffarinia and Hamlen [40] aim to

reduce the size of a stripped binary by removing such sets

of features (code fragments) that are added by the developer
but are not used by the end user. They even try to remove
obscure features present in the binary that are no longer
required and are also not tested thoroughly enough [90].
Figure 12 shows a high-level design of their idea.

They start by generating the traces of the binary execution
on different unit tests provided by the user. The traces pro-
vide the information regarding what code fragments the user
really needs, and also in what context. The authors explain
this with an example. Assume that a required functional-
ity 𝐹1 executes code fragments 𝑐1, 𝑐2, 𝑐3, 𝑐4 in order. Another
unwanted feature 𝐹2 executes code fragments 𝑐1, 𝑐3, 𝑐3, 𝑐4 in
order. Thinking naively, none of the code fragments can
be removed. However, the authors point out that the logic
that allows a branch between ((𝑐1, 𝑐3) and (𝑐3, 𝑐3)) can be re-
moved. Furthermore, if another essential feature 𝐹3 executes
𝑐2, 𝑐3, 𝑐3, 𝑐1, 𝑐3, 𝑐4 in order, then the transition from (𝑐3, 𝑐3)
can be allowed with the condition that it is immediately after
(𝑐2, 𝑐3), essentially providing context to a control path.
The authors create a decision tree for all such branch

statements in the binary. Figure 13 shows a sample decision
tree for two traces: one containing sub-sequences [𝑒1, 𝑒2, 𝑒3],
[𝑒2, 𝑒2, 𝑒3], and [𝑒3, 𝑒2, 𝑒3]; and another containing sub-sequences
[𝑒2, 𝑒1, 𝑒3] and [𝑒2, 𝑒2, 𝑒3]. The paths from the leaf nodes to
the root consists of all the valid paths to reach the root. The
height of the tree is bounded, indicating that only a part of
the history is used. The aim is to save on storage space. A flip
side of this idea is that the decision trees may not capture all
possible control paths. Hence, the authors have a provision
for relaxing the pruning criteria based on the number of
occurrences of a particular path considering all the traces
together. A low number indicates low confidence.
Now, traversing a decision tree to validate all the branch

statements will result in an unacceptable performance over-
head. Hence, the authors encode this information as a hash
and store it in a hash table. The authors leverage the hardware-
accelerated hash instructions such as sha1msg1 and sha1msg2
to ensure a minimal performance overhead. Using a hash
table, they show that the overhead of such a trimmed binary
is merely 1.87%.

Trimming down a binary certainly reduces the attack sur-
face for a CRA attack. However, modern applications gener-
ally do not have all the code built into them, and they rely on
linking dynamic libraries during runtime to realize certain
functionalities. These libraries are mapped into the address
space of a process before they can be used, and hence, they
bring back the original problem of having a large number of
code fragments for a CRA attack to choose from. A classic
example for this is the infamous return-to-libc attack [31].
The GNU C Library or libc provides the core libraries for
different systems that use the Linux kernel. This includes
access to some key functions such as open, read, write,
malloc, printf, dlopen, pthread_create, and exit. The
library provides a perfect place for an attacker to find gadgets

11

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Figure 14. Working of Glamdring [63] using LLVM to split
a process into secure and un-secure part. Adapted from [63]

and mount an attack on the CFI [23, 75]. Agadakos et al. [8]
aim to remove the unused code from the shared libraries
using a software-based method.

5.2 Binary splitting: secure and unsecure
Modern applications incorporate many different function-
alities that cater to the different needs of end users. These
functionalities are generally independent of each other and
are sometimes offered as “plugins” or “add-ons”. Apart from
these, the applications also contain ordinary features such
as reading a file, opening a network connection, writing to
the console, etc. These features, although important, do not
require any security. Only the core logic of the binary or
the modules that deal with sensitive data need to be pro-
tected [39, 57, 63].
Based on this observation, Lind et al. [63], in their work

Glamdring, split a binary into secure and unsecure compo-
nents. They leverage a trusted execution environment or
TEE to execute the secure part of the binary where its se-
curity in terms of confidentiality, integrity, and freshness
is guaranteed by the hardware. The rest of the binary exe-
cutes in a traditional manner. However, splitting a binary
into critical and non-critical components is not a trivial task.
A module if wrongly placed in the unsecure region instead
of the secure region will completely break the security of
the application. Similarly, over-loading the secure region
with unnecessary modules will cause the application to slow
down. Hence, there has to be a balance between security and
performance.

Glamdring relies on the developer to mark sensitive vari-
ables in the source code. After this, the idea is to perform a
static data flow analysis to detect all the functions that have
access to the sensitive variables and put those functions in
the secure region of the binary. It then proceeds to perform
static backward slicing to detect the functions that can write
to the sensitive variables and also move those functions in-
side the secure region of the binary. Figure 14 shows the

Vulnerable
binary

Static binary
rewriting

Conservative disassembly

SFI and randomization
framework

Branch instrumentation

Bounds range minimization

O-CFI
binary

Runtime
library

Dynamic
randomization

Figure 15. Working of OpaqueCFI [73]. Adapted from [73]

working of Glamdring [63]. First, the source code is anno-
tated and is used to create a program dependency graph
(PDG), where vertices are the statements, and the edges be-
tween two vertices indicate data and control dependencies.
This graph is then used to perform the data flow analysis and
the backward slicing creation. For the former, given sensitive
information (𝑆𝐹), the authors identify a sub-graph that has a
dependency on 𝑆𝐹 and move it to the secure region. For the
latter, they find all the vertices in the PDG that can be used
to reach 𝑆𝐹 and move them to the secure region. They use
the LLVM/Clang compiler tool chain to generate the final
binary.
Another notable work in this sub-category is by Melara

et al. [70]. They point out that library operating systems or
LibOSes [9, 19] are gaining popularity in a TEE setting due to
the fact that applications can be easily ported to it. However,
this creates a security concern because of the large size of
a LibOS that is susceptible to bugs. A security flaw in the
LibOS negates the benefit of running a trusted code in a TEE
setting. They propose to split the memory of a single enclave
into different memory privilege regions using Intel MPK
memory tagging technology. This will created an additional
separation between the application and the LibOS.

5.3 Binary randomization
While executing a binary, the operating system (OS) first
loads the binary file from the file system and populates the
memory before it can be executed. Populating involves creat-
ing a fixed layout that has separate segments for code, data,
stack, and the heap. This layout of a process is fixed and
has not changed much in the past years (may vary across
different architectures). It allows an attacker to make strong
assumptions about the locations of different binary regions
within the memory. This is crucial for a code-reuse attack,
where the location of gadgets (blocks of instructions end-
ing in a branch statement) has to be known in advance to
make the attack feasible (since the attacker has to provide
the addresses). The defense methods in this category make it
challenging to locate a gadget within a loaded binary. They
achieve this via randomizing the layout of the binary. How-
ever, this is a non-trivial task and needs support from both

12

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Original
binary

Encrypted
binary, B1

Encrypted
binary, Bn

Key_n

Key_1

Memory
controller

AES
Decryption

Exec

Processor
Key_n

Figure 16.Working of PolyGlot [87]. Adapted from [87]

the hardware and the OS. At a significantly coarser level,
which is the default setting in the Linux kernel, the base ad-
dress of the whole process is shifted by a fixed offset, result-
ing in a complete address space shift. The offset is changed
for every execution. The point to note is that using a single
offset shift allows for the easy location of objects in memory.
This is called address space layout randomization or ASLR.
Researchers have proposed randomization at a more sophis-
ticated level; different segments are shuffled using different
offsets to make the process of gadget discovery hard. How-
ever, a very fine-grained approach incurs more performance
overheads due to the time spent in locating a memory word.

Mohan et al. [73] in their work opaque control-flow in-
tegrity (O-CFI), argue that a combination of fine and coarse-
grained CFI can provide better security. They perform fine-
grained randomization of the binary at load time. The au-
thors propose to use the source code to create a destination
set for each indirect branch. Then each set is reduced to its
minimum and maximum value, essentially creating address-
based bounds for any indirect jump instruction. They extend
a prior approach to achieve fine-grained randomization of
the basic blocks at load time. The objective here is to random-
ize the value of the bounds. This raises the bar for an attack
as an attack that may be possible earlier is no longer allowed.
Furthermore, they also employ an optimization method that
keeps the difference between the maximum and minimum
allowed jumps to a minimum (see Figure 15). The bounds
are stored in a structure called the bounds lookup table or
BLT. The BLT is stored in a hardware-protected memory and
is not available to the attacker. These bounds are verified
at runtime to determine if there is an attack. The logic that
actually performs the checking leverages Intel MPK for its se-
cure operation. The authors report a performance overhead
of 4.7%.

Another approach for fine-grained randomization is at the
instruction-level. The basic idea is that all the instructions in
a binary are encrypted with a secret key. These instructions
are then decrypted either in the fetch or the decode stage
of the pipeline. As an attacker does not have access to the
secret key, she cannot tamper with the instructions while
the process is executing, thus preventing any code injection
attacks. However, it cannot protect against code reuse attacks
as it just needs the location of code fragments (gadgets)

Regular PTD

ISR PTD

Regular PTD ISR PTD

Regular PTE

Regular PTE

Key

Proc. A Page Table

Proc. B Page Table

ISR PTE

Figure 17. Storing of the keys in the page table in Poly-
Glot [87]. Adapted from [87]

and not its content. This randomization technique is called
instruction set randomization or ISR.

Sinha et al. [87] propose an instruction set randomiza-
tion scheme that prevents code reuse attacks. The authors
propose per-page code encryption of a binary using a ran-
dom key. This key-to-page mapping is then packaged into
the binary by encrypting it using an asymmetric encryption
scheme, where we use the public key of a processor as its
key (see Figure 16). The dynamic loader and the OS extract
the key from the binary during execution and store it along
with the page table entry (PTE) in the page table (see Fig-
ure 17). The decryption occurs when there is a page fault for
a code page and the page is brought to the on-chip cache. The
code page remains encrypted in the main memory. The data
pages are not encrypted and can be accessed without any de-
cryption. The authors point out that to prevent a code reuse
attack, there are two sufficient conditions: the host binary
should differ from the attacker binary and the loaded code
should not be readable. The first condition is met by encrypt-
ing the binary with different keys. The second conditions
is satisfied as the code pages are only decrypted when they
are brought to the on-chip caches. They report an average
performance drop of 4.6%.

Other notable works in this area are by Seo et al. [83] and
Du et al. [34]. Seo et al. [83] address the challenge of ran-
domization inside Intel SGX. Doing so is challenging inside
SGX as the total amount of memory is low (128MB). They
implement a custom loader for the purpose. While loading
the program in SGX, first, the loader is loaded into the code
section and the program in the data section. In the second
phase, the code in the enclave is loaded for execution. Its
operation needs access to the source code and incurs a per-
formance overhead of 2.35% to 7.6%. Du et al. [34] add new
instructions to support dynamic key generation along with
instructions to enable hardware-level randomization and in-
struction translation. Their implementation on an OpenRISC

13

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

label_1

label_2

label

label_n

CFIBR
label

CFIDEL
label

CFIRET
label_n

call

return

1

2

3

Standard
Instructions

HAFIX
Instructions

Label state
memory

Figure 18. Architecture of HAFIX [30]. Adapted from [30])

processor running Linux leads to a performance overhead
of less than 0.7%.

5.4 Control flow tracking of binaries
The instruction sets (ISAs) for different architectures were
designed with only one objective in mind – performance.
They did not have dedicated security-specific instructions.
Hence, adding security and performing verification was the
responsibility of the compiler; this had an adverse effect on
the runtime performance of the binary. Using traditional
instructions to do the verification results in a significant
performance overhead. Researchers have proposed modifica-
tions to the ISA to make a security check a native operation.

Davi et al. [30], in their work HAFIX, propose a novel
mechanism to prevent return oriented programming (ROP)
attacks. The key idea here is to restrict the target of a return
instruction to within the functions that called a call instruc-
tion. In doing so, HAFIX severely restricts the ability of a
return statement to jump to a point anywhere in a process’
address space. To achieve this, the authors propose a modi-
fied ISA that contains CFI instructions. Along with this, they
also propose a new compiler that automatically adds these
CFI instructions to the correct places in the binary.

A brief overview of HAFIX is shown in Figure 18. In order
to track what function is currently executing, HAFIX mod-
ifies the compiler to assign unique labels to each function.
Furthermore, it introduces three new instructions CFIBR,
CFIDEL, and CFIRET to track functions during execution.
HAFIX ensures that every function executes the CFIBR in-
struction as its first instruction. This instruction will load the
unique-id of that function in a dedicated area of the mem-
ory indicating that the function is now executing (function
activated). The CFIDEL instruction is executed just before a
function returns. This will remove the id from the dedicated
memory region, indicating that the function is done with its
task. To ensure that a return instruction does not randomly
jump to an address in the process’s address space, a return
is only allowed to a CFIRET instruction that has a pointer to
the currently executing function.

Process Runtime

Secure Application

System Resource Service

Process Runtime

Secure Application

ARM64 Variant ARM64 Metadata X86_64 Metadata X86_64 Variant

HeterSec MVX HeterSec MVXHeterSec Address Space

Per process
syncrnoized
page table

HeterSec Linux ARM64 HeterSec Linux X86_64

ARM64 Multi-Core X86_64 Multi-Core

Figure 19. Design of an heterogeneous-ISA platform [99].
Adapted from [99]

To support recursive function calls, HAFIX adds a new
instruction called CFIREC and a register CFIREC_CNTR. In
case of a recursive function call, the compiler ensures that
the first instruction called is CFIREC (instead of CFIBR). The
instruction CFIREC activates the function only if the value
of CFIREC_CNTR is zero. Otherwise the function is already
activated, and the activation is skipped. Every time CFIREC
is encountered, the value of register CFIREC_CNTR is incre-
mented by one. Similarly, upon encountering the instruction
CFIDEL, if the value of CFIREC_CNTR is more than one, then
it is decremented by one. The authors report a performance
overhead of 2% due to these new CFI instructions.

5.5 Heterogeneous architectures
The attacks on a binary that leverage the instructions in the
binary assume a particular architecture. This assumption
can be broken by compiling a source code to generate two
different binaries targeted to different architectures. These
binaries can then be executed in parallel, and their state
can be compared to ensure that they match. A mismatch
indicates that there is an attack. This is a non-trivial task,
and doing so efficiently is a challenge.

Wang et al. [99] propose a framework to ensure the CFI of
a binary by using heterogeneous ISA setups. They use real-
world x86 and ARM machines, and the framework provides
an illusion to the binary that it is executing on a multi-ISA
chip multiprocessor (CMP). They evaluate two methods for
protecting the CFI of a binary on a multicore chip: moving
target defense (MDT) or multi-variant execution (MVX). In
an MDT execution, the execution state of an application
is probabilistically migrated from one ISA to another. This
creates a challenge for a CRA attacker as she has to guess
the timing of these migrations and chain the gadgets in such
a way that they execute correctly across different executions
on different ISAs. In an MVX execution, multiple copies of
the executions are launched across different executions, and
their state is monitored (such as the return value of system

14

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

calls, segfaults, etc.). Any divergence in the value of these
states indicates a potential attack on the binary.
In order to support dynamic migrations across different

ISAs, the authors propose a distributed kernel that helps to
ensure a consistent state for a “protected application”. The
first challenge is that the memory state of the application has
to be kept synchronized in order to ensure a valid state when
migrating. For this, they propose a per-process on-demand
synchronized page table (see Figure 19). The second chal-
lenge is the management of global resources such as open
files, semaphores, and sockets. To support this, they intro-
duce the concept of a master node and a follower node. Here,
the application is provided the resources from the master
node, and the follower node maintains a virtual descriptor ta-
ble (VDT). When the application performs any operation on
the follower node, the VDT is used to issue an RPC (remote
procedural call) to the master node to service the request.

6 Process-based defense methods
The defense methods in the previous section (Section 5) aim
to secure a binary by either putting CFI instructions directly
in the binary or by removing instructions from it that are of
no use to an user but can be potentially used by the attackers
to mount an attack. These methods have the advantage of
providing fine-tuned defense methods as per the applica-
tion’s requirement. However, most of them need access to
the source code to support compiler-enabled defense meth-
ods. Apart from this, they are also limited in terms of what
can be done to secure a binary. The modifications to a bi-
nary have to take into account various size, compatibility,
portability and performance overheads.
The defense methods in this category do not modify the

binary. Instead, they focus their attention on protecting the
state of the application while it is being executed. The state
of a process constitutes of the data contained in its address
space – the stack and the heap, along with data structures
that a operating system maintains to enable an efficient and
fair execution in modern multi-core and multi-tenant sys-
tems.
Some of the defense methods create a dynamic form of

the defense methods that are a part of the previous category
(binary-based). For example, layout randomization is gen-
erally done at the time of loading, and then it mostly stays
the same throughout the life cycle of a process [92]. Here, a
dynamic component is added to it by enabling randomiza-
tion of the layout throughout the life cycle [22, 37]. Apart
from this, some of the defense methods require an initial
setup for profiling the applications to enable these defenses.
However, as most of the work is done while the application is
executing, we put those defense methods in the process-based
category instead of the binary-based category.

Table 5. Defense methods protecting key program compo-
nents and structures.

Defense
method

Hardware
feature

Application
attribute

Perf. Attack
model

Method

HWTag [106] HW Tag Kernel
memory

0% –
4%

Complete
protection

Small TCB
(Kernel)

MicroPolTag [49] HW Tag
and ISA
changes

Reference
monitor

- Policy
violations

Micro-
policies

CCFI [69] Registers &
AES-NI
inst.

Pointers 18% –
38%

ROP and
JOP

MAC

StackCanary [28] Register Stack 3.2% ROP A parallel
shadow stack

TaggW [81] HW Tag Stack 5.7% ROP Stack
integrity

HCIC [108] PUF Return
pointers

.95% ROP Encryption

HWAddrSan [85] Tags Stack 2× Overflow Validation of
memory
addresses

REST [88] Novel
HW

Stack and
Heap

2% Memory
errors

Cache-line

LightCFI [80] AES Inst. Memory
addresses

4% ROP &
JOP

Encryption of
the addresses.

PACItUp [62] ARM
pointer
protect.

Pointers 0.5%
(code)
&
19%
(data)

ROP MAC checks
in pointers

HWCDI [61] ISA modi-
fication

Control
data

0.19% Data flow
attacks

Encoding

Morpheus [37] HW Tags Test 1% ROP Randomization

ShadowStack [16] Intel
MPK

Stack 2% ROP and
JOP

Shadow-stack

ShadowGuard [18] IPT Stack 2% ROP Selective
shadow stack

ASIST [22] Registers Instructions 1.5% ROP Dynamic ISR

PACSafe [48] ARM
pointer
protect

Pointers 30% ROP PAC chain

FineDIFT [20] HW Tag Data
objects

5-6% Integrity Tags

Shakti-T [71] HW
enforced
base and
bound

Pointers – Spatial
and

Tempral
protection

Branch and
Bound

RetTag [101] New
instruc-
tions

Pointers 0.11%-
7.69%

ROP PAC

6.1 Dynamic process randomization
The defense methods in this sub-category aim to enable dy-
namic randomization of an application’s variable-to-address
mapping while the process is executing. The general idea
here is to prevent an attacker from locating code snippets,
also known as gadgets, in the address space of the application
– a key requirement for CRA attacks.

15

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Threshold
registerRegister File

Churn
Unit

D$

Enc/Dec

I$

Decrypt Kc

L2$

DRAM Controller

RISC-V Core

Pipeline Tag
Propagator

Pointer
Displacement

Attack
Detector

Ta
gs

IT
L

B

D
T

L
B

Ta
gs

KCP
KDP

Ta
gs

Tags $

DRAMTa
g

S
to

re

Figure 20.Architecture ofMorpheus [37]. Adapted from [37]

Gallagher et al. [37] in their work Morpheus argue that a
single round of randomization of the contents of an applica-
tion, irrespective of the granularity, is vulnerable to disclo-
sure attacks from a patient attacker. The attacker can deploy
a naive scanner that scans the complete address space to
find the code fragments required to mount an attack. Since
randomization is only done at load time, the locations of
those fragments are fixed for the duration of the execution.
They propose a novel hardware-assisted, domain-wise,

constant randomization (churning) of the application during
execution. They point out that a valid execution of an appli-
cation relies on the defined semantics of the language and,
to a lesser extent, also on the undefined semantics. However,
an attack relies almost entirely on undefined semantics such
as out-of-bounds access, overwritten return addresses, and
jumping to a random location in the code. Hence, they argue
for the randomization of these undefined semantics. In order
to do so, they divide the address space of an application into
four categories: code (C), code pointers (CP), data pointers
(DP), and data (D). They use a two-bit tag to encode this in-
formation with every memory object. Initially, these tags are
assigned by the compiler (an LLVM extension). As shown in
Figure 20, they modify the micro-architecture to propagate
these 2-bit tags all the way in the pipeline of the processor.
These bits are used to perform error-checks in the pipeline
as follows:

Ops Check Condition Rule
Execute Insn.tag != C Only execute C
ANY R1/R2.tag == C No C in the pipeline
JAL(R) R1.tag != CP Jump target must be CP
LD/ST R1.tag != DP Address must be a DP

Figure 21. Pointer displacement defense in Morpheus [37].
Adapted from [37]

Encrypted binary

Disk

Unmodified
binary

Disk

SchedulerProcess A keyA Process B keyB

keyA = read_key() keyB = rand_key()
Operating System

Encryted
Instructions

usr_key

Decrypt I-cache

Figure 22. Architecture of ASIST [22]. Adapted from [22]

The second defense they employ is a pointer displacement
defense. Every CFI attack relies on locating the memory ob-
ject of interest within the process’s address space. The au-
thors add displacements to separate regions of the address
spaces: code address space (𝐷𝐴𝑆𝐶) and data address space
(𝐷𝐴𝑆𝐷). They are located at a fixed offset from the original
virtual address space (𝑉𝐴𝑆). Hence, a 𝑉𝐴𝑆 → 𝐷𝐴𝑆 transla-
tion, and vice-versa, requires a simple arithmetic operation
(see Figure 21).

Finally, Morpheus introduces domain-based encryption.
It essentially encrypts the content in different domains with
a domain-specific key. The tag associated with the memory
object is used to select the correct key for its encryption or
decryption. They use the address of the object to ensure that
the memory objects containing the same value do not output
the same ciphertext. They report an average performance
overhead of 0.84% and a worst-case overhead of 6.71%.

16

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Christou et al. [22] in their workASIST, propose hardware-
assisted instruction set randomization (ISR) to protect the CFI
of an application from random code injection attacks. They
argue that a software-based ISR incurs high performance
overheads: up to 290× in an emulator and 2.9× on bare-metal
machines. Furthermore, they also point out that prior work
statically encrypts a binary using a fixed key. This makes
the encrypted binary vulnerable to information disclosure
attacks where an attacker aims to leak the key used for
encryption. This also restricts the dynamic linking of shared
libraries (as they will not be encrypted). All the libraries that
are to be used must be statically linked and encrypted before
use.
Hence, the authors propose dynamic encryption of the

instructions in the binary at the time of their usage. To enable
this, they encrypt the code pages when a process faults while
accessing them for the first time. In this case, a per-execution
key 𝑘 is generated, an anonymous page is allocated, and the
content of the code page is copied to the anonymous page
and then encrypted. The key 𝑘 is stored in a register usrkey.
This key is then used to encrypt the code pages on a fault
and decrypt instructions by the CPU during the rest of the
operation (see Figure 22). They use a separate key for the
kernel, and that key is stored in a register called oskey. As
shown in Figure 22, the instructions are decrypted before
they are stored in the on-chip instruction cache.
Furthermore, to prevent ROP attacks, they propose to

encrypt return addresses using the process’s key just before
a function call. If the attacker overwrites the return address, it
will not decrypt to a valid value (as the key is secret), leading
to a process crash. They incur a performance overhead of
1.5% and require 0.7% additional hardware.

6.2 Protecting the stack
During execution, an application makes many functions calls
and uses a lot of temporary variables to finish its task. In or-
der to enable this, an application is associated with a memory
region known as the stack. The stack of an application is used
to store temporary variables, return addresses, function call
arguments, and spilled register values. It uses a LIFO (last-in,
first-out) policy. This allows it to place the most recent data
on top of the stack so that it can be accessed quickly. The
addresses stored on the stack determine the control flow of
the application after a function returns. Hence, the stack of
a binary is a popular target for attackers to violate the CFI
of an application. By manipulating the values stored on the
stack, the attacker can divert the control flow any way she
likes. Hence, multiple defense methods aim to protect the
stack of a process against manipulation while ensuring a
minimal performance and storage overhead.

The idea of using a shadow-stack to ensure the consistency
of the “main-stack” has attracted the attention of many se-
curity researchers. A shadow stack is a secure region in the
memory that stores either a complete or a partial copy of the

Figure 23. Traditional approach for maintaining a shadow
stack [28]. Adapted from [28]

main stack. The values in the main stack are compared with
the values stored in the shadow stack prior to using them,
and an error is flagged in case of a mismatch. In a completely
protected binary, all the values on the stacks are verified.

Dang et al. [28] discuss the traditional approach of main-
taining a shadow stack. They argue that the traditional ap-
proach is inefficient in terms of looking up values in a shadow
stack; moreover, while handling certain instructions such
as longjmp and setjmp it may unwind the stack (pop return
addresses) multiple times. Figure 23 shows the working of a
traditional shadow stack. Here, the shadow stack is located
at a fixed memory address in the address space of the process.
The return addresses that are stored on the main stack are
also pushed into the shadow stack. A shadow pointer is main-
tained that points to the top of the shadow stack. However,
in the case of a longjump it may be the case that the main
stack is unwound multiple times. In that case, the value at
the top of the shadow stack will not match that on the main
stack. A possible solution here is to keep popping values
from the shadow stack till a match is found. However, this
is not a complete solution (what if multiple functions are
called multiple times).
To this end, the authors propose a design for a parallel

shadow stack (see Figure 24). Here the shadow return point-
ers are maintained at a constant offset from the values stored
on the main stack. This simple idea solves many issues. Now,
there is no need to maintain a shadow stack pointer as the
shadow pointers can be easily accessed by a simple arith-
metic operation on the addresses. Furthermore, this design
naturally handles the issues raised while using longjmp in-
structions. Irrespective of the addresses used, the correspond-
ing shadow address can be easily computed. The authors
also note the issue of time of check to time of use or TOCTOU
attacks. They discuss two scenarios: prologues where an at-
tacker modifies the value of the return address before it can
be placed on the stack and epilogueswhere the return address
value is modified after it has been verified against a value

17

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Figure 24.Working of a parallel shadow stack [28]. Adapted
from [28]

Return Address

Local Data

Return Address

Local Data

Call Stack

fo
o(

)
ba

r(
)

Return Address

Local Data

&(pop rdi; ret)

Local Data

&("/bin/bash")

&(system)

ROP Payload

Figure 25. Return oriented programming or ROP attack on
a stack [16]. Adapted from [16]

stored on the shadow stack. However, as noted in the later
work, doing so requires a precise idea of the time required
for different memory accesses [16]. Using their design of a
parallel stack, they were able to bring down the overhead of
the shadow stack from 10% to 3.5%.

Burow et al. [16] thoroughly analyze the different mecha-
nisms of implementing a shadow stack and different ways
to compare the addresses stored on them with values on the
main stack. They focus on preventing return-oriented pro-
gramming or ROP attacks on a process. As explained earlier,
in an ROP attack, the backward edges of the control flow, i.e.,
the return addresses stored on the stack of an application,
are overwritten with attacker-provided data (see Figure 25).
Earlier, these were used to return the control to attacker-
provided code (present in the overwritten values). However,
with the DEP protection in place where stack pages are non-
executable, the return is to a code-fragment that is already
a part of the code (gadgets). Many gadgets can be chained
together to execute malicious logic. The authors propose
two methods to implement a shadow stack: direct shadow
stack and compact shadow stack. These were referred to as
parallel stack and traditional stack in the prior work [28].

They point out that a directly mapped shadow stack pro-
vides an efficient way to compute the addresses. However,
it increases the memory overhead by 2× since we need to

maintain a copy of the main stack. Furthermore, as it needs
to be a fixed offset from the main stack, it interferes with the
usage of the address space by other threads in the application.
They propose to use a dedicated register to store the offset
and use a per-thread offset that is dynamically determined.
This solves the issue of address-space hogging by the shadow
stack.

For a compact shadow stack, the system needs to maintain
a dedicated shadow stack pointer. The authors argue that if
the pointer is stored in the memory, then it is accessed twice
for a single function call: during a call to store the return
address and during a return to validate the return address.
Hence, they propose to use a dedicated register to store the
stack pointer as well. This reduces the number of memory
accesses and dramatically improves performance.

For comparing the return addresses, the authors propose
two mechanisms: either compare the return addresses from
the main stack and the shadow stack and proceed only if
they match or just use the address from the shadow stack.
The former approach allows for the detection of an attack
and subsequent recovery steps, whereas the latter approach
silently stops an attack. They report a performance overhead
of 5.78% and 5.33% for both direct and compact stacks. The
latter scheme uses a dedicated register to store the stack
pointer. As the performance overhead in both is the same,
the authors argue for using compact shadow stacks due to
their low memory overhead.

Chamith et al. [18] argue that shadow stacks have not
gained popularity due to the high performance-overhead
incurred by them. They state that the prior work has focused
on an efficient implementation of the shadow stack by either
providing a better lookup scheme or limiting the amount
of data that is stored on the shadow stack. They focus on
the policy aspect of a shadow stack by arguing that not all
the functions in a binary or all the paths of a binary need to
be checked during an execution. The possibility of a stack
overwrite is only from a control path that actually writes
on the stack. The authors perform a static analysis on the
binary at a functional and basic block level. A function is
tagged as a safe function if it does not write anything on the
stack above the local stack frame and does not call any other
function that is tagged as a non-safe function. The authors
use graph analysis to mark all the functions as either safe or
unsafe starting from the leaf level. Now, it may be possible
that a function is marked as unsafe due to a statement that
is conditional, i.e., it does not appear in all of the control
paths of the function. Hence, the authors repeat the above
procedure at a basic block level, and all the control paths that
are marked as safe are skipped from a shadow stack check.
Doing so reduces the overhead from 8% to 2%.

18

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

6.3 Pointer verification
A shadow stack offers protection to the stack at the expense
of performance and storage overheads. Ensuring the consis-
tency of every object on the stack impacts the performance
and increases the storage cost to maintain the metadata re-
lated to the objects on the main stack. Researchers have iden-
tified that it is not required to protect the complete stack,
and we can get away with ensuring the consistency of some
objects. The methods in this sub-category aim to follow this
idea and improve the performance and the storage cost.

6.3.1 Trip-based error detection
A dynamic memory pointer is used to determine the control
flow of a process. We can protect a pointer in two ways [109]:
spatial protection, the pointer should not access any mem-
ory outside the region allotted to it, and temporal protection,
which restricts the “use-after-free” type situations. As ex-
plained earlier (refer to Section 2.1), unsafe languages do
not have explicit memory checks. The defense methods in
this sub-category aim to add memory checks intelligently to
ensure a minimal performance overhead.

Serebryany et al. [84] proposed a tool called AddressSan-
itizer to reduce the number of memory errors. It provides
spatial and temporal protection to memory pointers by using
a shadow memory to store encoded forms of valid memory
addresses. This information is then used to ensure that all
memory accesses are valid.

To design the shadow memory, AddressSanitizer uses the
fact that an 8-byte memory can be in one of 9 states: either
all of the memory is safe to access or only 𝑘 bytes, 0 ≤ 𝑘 < 8
are accessible. If 𝑘 == 0, then all the bytes are accessible.
They use one byte to encode this information and store it in
the shadow memory. This encoding mechanism also allows
an efficient lookup: given an address Addr, the address in
the shadow memory is Addr >> 3 + Offset. The Offset
is used to control the location in the shadow memory such
that it does not interfere with other memory regions of the
application. The validation logic is also quite simple.

1 ShadowAddr = (Addr >> 3) + Offset;

2 k = *ShadowAddr; // Valid Addresses

3 if (k != 0 && ((Addr & 7) + AccessSize > k))

4 // AccessSize can be: 1B, 2B, 4B, or an 8B.

5 ReportAndCrash(Addr);

Listing 4. Logic to detect an invalid access in
AddressSanitizer [84]

Furthermore, AddressSanitizer provides spatial protection
by modifying the malloc() call to allocate extra memory
around the originally allocated region. The authors call this
region the red zone. Any attempt to access pages in this red
zone will signal either an underflow or overflow error. Also,
to provide protection against temporal memory errors such

as use-after-free, AddressSanitizer modifies the free() call
to put the freed region into a state of quarantine. This region
will not be allocated by the malloc() call. The basic idea
here is to delay the allocation of the freed memory region so
that any immediate access to it after it has been freed can be
detected. Naturally, the size of this quarantine region needs
to be limited, otherwise it will result in significant memory
pressure.
Based on this, they were able to detect many previously

undetected errors. However, this resulted in an overhead of
2×, 3×, and 3× for CPU performance, memory usage, and bi-
nary size, respectively. The CPU performance worsened due
to the additional instructions for shadow memory checks.

To remedy this situation, Serebryany et al. [85] proposed a
hardware-assisted shadow memory check scheme that lever-
ages the memory tagging feature onmodern hardware. Mem-
ory tagging allows appending 𝑇𝑆 bits (tag size) to every 𝑇𝐺
bytes (tagging granularity) of the memory. The authors used
these bits to store the shadow encoding, thus resulting in a
significant drop in the total memory usage (4% from 3×) [85].
This also simplifies the validation logic and brings the over-
head in the binary size down to 50% from 3×. However, the
CPU overhead remains the same (2×). This is primarily be-
cause of the overheads of tagging the heap/stack objects
during their allocation and deallocation.
A similar tool called KASAN [4] exists to find memory-

related bugs in the Linux kernel. It can be enabled by setting
CONFIG_KASAN=y. If enabled, the compiler will insert func-
tion calls (asan_load*(addr), asan_store*(addr)) before
every memory access. The logic to translate a kernel ad-
dress to its shadow memory address remains the same as
before [84]:

1 static inline void *kasan_mem_to_shadow(

const void *addr)

2 {

3 return ((unsigned long)addr >>

KASAN_SHADOW_SCALE_SHIFT)

4 + KASAN_SHADOW_OFFSET;

5 }

KASAN_SHADOW_SCALE_SHIFT and KASAN_SHADOW_OFFSET are
configurable variables.
The hardware optimizations help us get around some of

the limitations of purely software-based approaches such as
AddressSanitizer. However, the overall performance over-
head is still pretty high, and hence, limits the usage of Ad-
dressSanitizer in production binaries. Nevertheless, Address-
Sanitizer has detected previously unknown bugs that were
able to bypass rigorous testing phases.

Hence, to further reduce the performance overhead, Sinha
and Sethumadhavan [88] propose another hardware-based
trip-based memory corruption detection mechanism called
Random Embedded Secret Token (REST), which is based on

19

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Sensitive Data

Benign buffer
*p

Memory

Sensitive Data

Sensitive Data

Benign buffer
*p

Memory

Sensitive Data

REST Trip

REST Trip

(a) Out-of-bounds
Read (Vulnerable)

(b) Out-of-bounds
Read (Protected)

M
em

or
y

re
ad

 o
pe

ra
tio

n

Figure 26. Spatial pointer corruption detected by using
REST [88]. Adapted from [88]

Memory

PUFE EHDME EHDMD PUFD

Judger

Instruction Cache

Program

Profile

Hardware-assisted CFI Module

High Performance
CPU Pipeline

load call jmpret

Non-control
flow instruction

Figure 27. Architecture of HCIC [108]. Adapted from [108]

large random values. These REST tokens are stored on the
stack of a process. A pointer object is surrounded with a red
zone memory filled with REST tokens as shown in Figure 26.
Any access to a REST token present in the red zones will
cause privileged memory safety exceptions.

6.3.2 Encryption-based error detection
Apart from such trip-based techniques, another promising
approach is to encrypt the addresses and decrypt them before
using them. An invalid address indicates an attack on the
control flow of the binary.

Zhang et al. [108] in their work HCIC, propose a mech-
anism to validate the return addresses and indirect branch
addresses before the corresponding branch/jump is executed.
These instructions are used by return-oriented programming
(ROP) and jump-oriented programming (JOP) attacks, respec-
tively. By ensuring that every such instruction is validated,
they thwart both of these attacks. In case of an ROP attack,
the attacker uses the buffer overflow vulnerability to over-
write the return address stored on the stack to a new address

that points to a chain of gadgets. To prevent that, the authors
calculate an encrypted hamming distance (EHD) between
the return address and a key generated using the PUF (Phys-
ical Unclonable Function) [5, 13] before the address is stored
in the stack. The EHD is encrypted using the same key and
is stored on the stack. When the function call returns and
the return address is popped from the stack, the EHD is cal-
culated again and is expected to match the one calculated
earlier. If it does not, a fault is raised. Any tampering with
this process can be detected; this will fail the test prior to
executing the return statement (see Figure 27).

To prevent JOP attacks, the authors scan the loaded appli-
cation and encrypt the first instruction at the target address.
Thus, during an attack, forcing the jump to an unencrypted
instruction will lead to a system error. The key used for en-
cryption (and decryption) is generated dynamically when
the application is loaded. Furthermore, they propose a hard-
ware extension to store the keys into dedicated registers
and a module to dynamically generate the keys. Figure 27
shows a high-level design of HCIC [108]. The authors report
a negligible performance overhead of 0.95%.

Other notable works in this category are by Qiu et al. [80]
and Mashtizadeh et al. [69]. Identifying the need for an ef-
ficient encryption and decryption method, Qiu et al. [80]
provide a unique way to prevent ROP (return oriented pro-
gramming) and JOP (jump oriented programming) attacks.
Their proposal adds an LEA-AESmodule to the CPU architec-
ture. This is responsible for the encryption and decryption of
return addresses during the execution of the binary. ROP and
JOP rely on modification of these addresses to successfully
mount an attack. It proposes encrypting the return address
when the call statement is executed, and decrypting it when
ret is called. If the return address is modified in between, the
decrypted address will be erroneous, which will result in a
code exception. CCFI (Cryptographically enforced control
flow integrity) by Mashtizadeh et al. [69] uses a message
authentication code, or MAC, to protect the pointers stored
in the memory. The MAC function uses the value of the
pointer and its location to generate the final hash value. This
prevents the swapping of two-pointers in memory. The key
used to generate these MACs is stored in a dedicated reg-
ister to prevent their leaking. They report a performance
overhead of 18-38%. This method, however, cannot prevent
a replay attack if the attacker knows the value, location, and
MAC of an old pointer.

Liljestrand et al. [62] use the ARM ISA’s pointer authenti-
cation (PA) mechanism to ensure the security of data point-
ers during execution. As already mentioned before, the PA
mechanism generates MAC signatures (called pointer authen-
tication code or PAC) that are associated with every memory
pointer and are verified before using the address. The signa-
ture is generated using a secret key, address, and the current
stack pointer. Since an attacker does not have access to the
key, she cannot generate a return address with a valid PAC.

20

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Figure 28.Working of ARM’s pointer authentication code.
The instruction pacia is used to generate the signature of
the pointer and store it in the unused bits. The size of the sig-
nature depends on the system’s configuration [62]. Adapted
from [62]

Key

Pointer

Context

PAC Pointer autpac

0 Pointer

ERR Pointer

63 n 063 n

063 n

063 n

Figure 29. Working of PACSafe [48]. Adapted from [48]

Figure 28 shows the generation of the PAC using the instruc-
tion pacia that uses the instruction code key for signature
generation. PA provides 5 different keys: two for code, two
for data, and one generic [25, 62]. The instruction autia is
used to validate the pointer that contains the PAC generated
using the pacia instruction.

The authors start by listing the limitations of the current
PA implementation. First, the current setup is vulnerable to
replay attacks. An attacker can reply an old address, and that
will be assumed to be valid as the MAC will match (since the
same key is used). To prevent this, the authors propose to
add additional checks during the validation of an address.
They encode additional information about the data type a
particular pointer is pointing to. They use the LLVM com-
piler’s ElementType feature for this. Furthermore, to prevent
the overwriting of return addresses, a return address is en-
coded with a compile-time nonce (function-id) to ensure that
it cannot be reused later.
Hohentanner et al. [48] also leverage the ARM pointer

authentication feature in their work PACSafe to ensure mem-
ory safety in applications developed using C/C++. PACSafe
provides complete spatial and temporal protection for an
application, including its stack, heap, and global variables.

Figure 29 shows the working of PACSafe. The main idea is
to use a shadow copy of a pointer. Every object is associated
with a unique ID, which is used to calculate the PAC for a
pointer during its creation. Upon de-referencing, the PAC is
checked again. If it was manipulated to point to a different
object, it would get a different ID, and the PAC check would
fail.When the object is deallocated, its ID is removed from the

Security Monitor

Unix Lib

Kernel

App 3

Unix Lib

Kernel

App 2

Unix Lib

Kernel

App 1

User mode

Supervisor
mode

Monitor
mode

Physical
memory

Figure 30. Architecture of Loki [106]. Adapted from [106]

system. This will ensure that an attacker can no longer use
any pointer pointing to it – ensuring temporal protection.

6.4 Runtime metadata
A compiler uses the information (“metadata”) available in
source code to optimize the corresponding generated binary.
This metadata is subsequently discarded and is not a part of
the generated binary. Researchers have observed that this
information, either whole or in part, can be used to validate
the execution, and in turn, the CFI of a binary. However,
augmenting a binary with this information is not trivial,
since it negatively affects the size and the performance of
the binary. Furthermore, adding a lot of memory checks
defeats the purpose of using unsafe languages in the first
place.
Leveraging hardware support to store the metadata and

propagating it through the pipeline during the execution re-
duces the performance overheads vis-a-vis similar software-
based methods [60, 76, 79]. This metadata can be used to
implement access control or security of the data. Upon detect-
ing an invalid access, the hardware generates and exception
and runs a custom handler.

Zeldovich et al. [106] argue that due to the semantic gap
between the software and hardware layers, existing hard-
ware support is seldom adequate. Due to this, developers rely
on software solutions embedded in the application to ensure
the security of the data. Hence, the trusted computing base,
the components which the user must assume to be secure,
consists of the OS and the software. Even if the software is
leveraging a hardware feature to provide security, the final
decision is made by the software. Any bug in the trusted
code base or TCB (the part of the software that is assumed
to be trusted) can be exploited by an attacker to violate the
CFI, and given the size of the TCB, the attacker can easily
find memory vulnerabilities providing an opening point for
an attack. Hence, the authors argue that the security of the
data must be handled by feature-rich hardware with support
from a small kernel code that is optimized for security.

21

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

The authors propose to use a tagged memory architecture
to ensure hardware-enforced application security policies.
They implement their prototype on an OS that is designed
to have a small trusted kernel. They use the HiStar OS and
modify it to support tagging. They term the newOS as LoStar.
Furthermore, they introduce a trusted software component
that runs underneath the kernel in a special privileged mode
called the monitor mode (see Figure 30). They associate a
32-bit tag with every 32-bit memory location. The monitor
software enforces the data policies and handles any faults
resulting from the tags. Other traditional interrupts, such
as the timer interrupts, cache misses, page faults, divide-by-
zero, are handled by the OS.
Working on similar lines, Hritcu [49] propose to use the

hardware tags to enforce micro-policies for memory safety,
control-flow integrity (CFI), compartment isolation, taint
tracking, information-flow control (IFC), and dynamic seal-
ing. They propose minimal changes to the ISA of a RISC
architecture to implement their solution. They tag every
word in the memory with a tag. This tag is then propagated
in the pipeline to enforce policies. To propagate tags effi-
ciently, they propose a hardware structure called rule cache,
which is responsible for ensuring whether the current op-
eration is valid or not, and if it is, decide on the tag of the
result.

Roessler and DeHon [81] also propose an implementa-
tion of software-defined policies to protect objects on the
stack by leveraging hardware-based tags. They propose that
every object be associated with a tag. These tags are prop-
agated by the hardware in the pipeline while maintaining
the policies defined by the user. They propose two different
modes of working. First is the protection of only the return
address pointers, and the second is protecting every stack
object. They report a performance overhead of 1.2% and 5.7%,
respectively.
Chen et al. [20] use dynamic information flow tracking,

or DIFT, to track the integrity of data items in an executing
process. This process is used to generate a robust data flow
graph, or DFG, which is typically not possible using a static
binary. The main aim is to ensure that the application follows
the developer’s intentions. Any deviation from it indicates
a violation of the integrity of data structures, which can
eventually be used to divert the control flow of an application
(DOP attacks).

Figure 31 shows the workings of FineDIFT. The authors de-
veloped a co-processor responsible for implementing policies
to protect the integrity of the data. To do so, they leverage
tagging data elements to track them across execution cycles.
While processing an instruction such as a store instruction,
the co-processor uses related information such as the target
address and the store size to fetch the tag and the policies
associated with the data object. The policy and the tag are
then used to determine whether the corresponding store

Register Register

coprocessor

value

FLAG TAG 0xf0 4

=

OK?

store load

Main Memory
Flag + Identifier

(Tag)
Address +

Size
Address +

Size

Flag + Identifier
(Tag)

Metadata Memory

Figure 31.Working of FineDIFT [20]. Adapted from [20]

Encoding/Decoding unit

Encoding Process

Decoding Process

target
address (ta)

dynamic ID

dynamic ID
original target
address (ta)

memory

address (la)

mapping table
for data (Td)

mapping table
for data (Ta)

memory

address (la)

memory

address (la)

revrse mapping
table for data (Tr)

mapping table
for data (Ta)

Encoding/Decoding unit

Figure 32. Encoding and decoding in HW-CDI [61]. Adapted
from [61]

operation is allowed or not. The metadata is stored in a CAM
(content addressable memory).

6.5 Protecting control flow data
Lee and Lee [61] propose to protect the control flow data
instead of the control flow information. They argue that the
control flow of a program is dependent on the value of the
control variables, and this is what is targeted by the attack-
ers to hijack the control flow. In the work HW-CDI [61], the
authors propose to encode the control data information at
runtime and decode it prior to use (see Figure 32). They pro-
pose a hardware extension to generate the key for encoding
and decoding data variables dynamically, which is not only
based on the value of the control data but also its address
in the address space. They propose two new hardware in-
structions emov, dmov similar to the already existing mov

22

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

instruction, to move the data to and from memory. emov or
encoded-mov is used to store the control data in memory,
and dmov or decode-mov is used to load the control data
from memory. They claim a performance overhead of less
than 1% (compare this with the reported 21% performance
overhead of the original CFI proposal [7]).
Menon et al. [71] discussed the issue of spatial memory

attacks (accessing data beyond its size) and temporal mem-
ory attacks (using invalid pointers) in RISC V-based systems.
They start with a discussion on different attacks such as
buffer-overflow attacks, return-to-libc attacks, and ROP at-
tacks. They also discuss different ways to prevent these at-
tacks such as encryption of the code pointer so that it cannot
be modified by an attacker, using a shadow stack, random-
ization, and control flow integrity checks. The authors pay
special attention to defense mechanisms using “fat-pointers"
to prevent spatial attacks on the pointers. Here, every pointer
is associated with a base and bound value that defines the
region the pointer can access. Anything beyond this, results
in an error. However, this presents a challenge in terms of
pointer storage as every pointer has to be appended with
additional information. The overhead of storing them can be
non-trivial. Prior work has proposed storing an embedding
of the base and bound information in the unused bits of a
64-bit pointer. Although this solves the storage issue, the
embedding causes memory fragmentation as the memory
can now be allocated only in fixed sizes.

To solve the challenges associated with the “fat-pointers"
and memory fragmentation, the authors propose Shakti-
T [71], a set of ISA extensions to RISC-V processors that
provide performance-efficient security solutions that protect
against spatial and temporal memory attacks. To achieve
this, they propose Pointers Limit Memory, or PLM, which is
used to store the base and bound information of the pointers.
Every pointer is associated with its own ptr_id that acts as
an offset into the PLM. To ensure quick access to the PLM,
the authors introduce a new register called the Pointer Limits
Base Register (PLBR) that will contain the base address of the
PLBR. Here, every aliased pointer (pointers pointing to the
same object) will point to the same entry in the PLM. For ex-
ample, assume there are n aliased pointers. Using the earlier
approach, the total storage overhead will be 2𝑛: one base and
one bound value for every pointer. However, in Shakti-T, we
only need 𝑛 + 2 storage units, one ptr_id for every pointer,
and a common base and bound value. Using this approach,
they were also able to reduce the storage overhead by up to
4× by using a common storage area for pointers pointing to
the same object.

This design also takes care of temporal attacks. Any data
freed by any aliased pointers will modify the common base
and bound values, which will be checked upon an access
by any other pointer. However, if all the pointers point to
different objects, the proposed solution has an additional
overhead. In the previous example, let’s assume we have

Virtual AddressPAC

Cipher

128-bit RAA key 64-bit Modifier

63 48 va_size 0
Return address

Figure 33. Generation and storage of PACs [101]. Adapted
from [101]

n unique pointers. Then, prior work will have a storage
overhead of 2𝑛, whereas, in Shakti-T, the overhead will be
3𝑛, one ptr_id, one base, and one bound value for every
pointer.

Wang et al. [101] in their work RetTag propose using a
Pointer Authentication Code, or PAC, to prevent ROP attacks.
Inspired by the message authentication code or MAC, a PAC
is a hashed and encrypted chain of return addresses (en-
crypted hash values of return addresses in a nested function
call). The idea is as follows: the PAC of a return address is
calculated upon a function call. Once the function is done,
the PAC of the actual return address (where the control flow
is being diverted) is calculated and matched with the previ-
ously calculated PAC.
Figure 33 shows the generation of a PAC for a return ad-

dress and its corresponding storage location. The PAC is
generated using the virtual address, a 128-bit key (called the
RAA or return address authentication key), and a 64-bit mod-
ifier to protect against replay attacks. The RAA key is fixed
and is stored in a secure area on the chip. The authors aug-
mented the RISC-V ISA with dedicated instructions to gen-
erate and validate PACs to make the whole process efficient.
Specifically, they added two new instructions: pac, which
calculates the PAC upon a function call, and aut, which vali-
dates the PAC when the function returns. Figure 34 shows
the working of RetTag [101]. The authors use the interme-
diate representation, or IR, of the source code to plugin the
new instructions and then execute them on an ISA-extended
processor.

Similar work in this area was done by Austin et al. [11] in
developing Morpheus-II, a RISC-V based processor that has
additional instructions to support always-on encryption for
code and pointers.

7 System-based defense methods
In the last section, we discussed different ways to protect the
runtime structures of an application using hardware-assisted
defense mechanisms. Those methods rely on either direct or
indirect access to either the source code or the binary of the
application. The defense mechanisms are then added to the
application (either to the source code or to the binary).

23

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Source Code

Compiler IR Modified IR

Protected
Binary

RISC-V Rocket Core
with RAA

instructions

RISC-V
Coprocessor

RISC-V Coprocessor

Compiler

Compiler-level
Instrumentation

Figure 34. Overview of RetTag [101]. Adapted from [101]

However, it might be the case that a defense method can-
not directly modify or monitor the state of the internal struc-
tures of an application. A typical scenario can be in a cloud-
based setting where the user wants to use a stock version
of an operating system or when the application is to be exe-
cuted in a TEE environment.

An attacker analyzes every aspect of a binary’s execution,
and hence defense methods need to do the same. In situa-
tions where the defense methods cannot modify the source
code or the binary, they rely on the behavior of the appli-
cation rather than the state of its internal data structures
and memory regions. An application performs many opera-
tions during its execution life cycle that can be quantifiably
measured using instruction traces, dTLB events, iTLB events,
cache events, branches taken, execution cycles, stall cycles,
etc. However, collecting these statistics using software-based
collection methods will incur a high performance overhead,
due to constant interrupts, context switches, and cache pol-
lution. Modern hardware provides an efficient way to access
this information without incurring a significant performance
overhead by using mechanisms such as Intel processor trace,
indirect-branch tracking, and hardware performance coun-
ters.

7.1 Control flow verification
The CFI property of an application implies that it should
follow the developer-intended control path during execution.
Any deviation from this path is deemed as a violation of the
CFI property. Now, the deviation may also occur due to un-
foreseen bugs in the code. In those cases, the application will
just crash without leaking any data. However, if an attacker
forces the binary to take a completely different control path
(that was not present in the developer-intended paths) with
a malicious intent of leaking sensitive information, then this
action gets classified as a CFI attack.

Table 6. The system-based class defense methods.

Defense
method

Hardware
feature

Application
attribute

Perf. Attack
model

Method

NumChecker [98] PMU Program
behavior

2.8% Rootkit Behavior
comparison

ROPDetect [68] PMU Program
behavior

– ROP Machine
learning

PathArmor [95] LBR Branches 8.5% CRA Branch
Validation

LockInsec [10] Novel
HW

Branch in-
structions

0.5% Data-
attacks

Edge-caching

Remote [97] PMU Program
behavior

4.42%
–

5.92%

CFI Compression
and remote
analysis

BBCFI [29] Novel
HW

Instructions < 1% CFI Basic blocks

Griffin [38] IPT Pointers 11% ROP and
JOP

CFI
enforcement

NoJumpBB [46] LBR with
Novel
HW

Basic
blocks

0.13% ROP and
JOP

Basic blocks

FlowGuard [66] IPT Trace 4% CFI CFG

HeNet [21] IPT Trace – Malware
detection

Deep learning

DeepCheck [107] IPT Trace – CRA CFG using
deep learning

The control paths in an application can be represented
using a control flow graph or CFG (see Figure 1). In a CFG, the
vertices are the functions in the application, and a directed
edge between two vertices indicates a function call from one
function to another. A CFG can also be constructed at an
even finer granularity by using basic blocks as nodes instead
of functions [29]. We use a function-based CFG here for
the sake of discussion. A complete CFG of an application
will have all the developer-intended paths in it. However,
creating a complete CFG is a non-trivial process [29]. This is
because of the dynamic nature of the applications. The direct
branches in the binary of an application can be factored in
easilywhile creating the CFG; however, the targets of indirect
branches are resolved at runtime, and there is no easy way to
resolve them statically. Hence, researchers have used traces
of applications to create the CFG [29]. However, this also
does not cover every possible path as that will require the
execution of the application with every possible input in
every possible environment – a difficult task [10]. Hence,
defense mechanisms rely on an approximated version of the
CFG to implement defense mechanisms.

Arthur et al. [10] aim to solve the core issues that enable
CFI attacks on an application: indirect branches. An attacker
overwrites the return addresses of the target in memory and
then misdirects the control flow to the overwritten addresses
instead of the developer-intended targets. The authors first
use the source code to generate a CFG and then replace all the
indirect branches (including return instructions) with a set of

24

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

void unsafe() {
ptr = %rbx;
call *ptr;
...
ret

}

void unsafe() {
ptr = %rbx;
if(ptr == func1)

call func1;
else if(ptr == func2)

call func2;
else

call attck_detected;

if(%ip == ret1)
jmp ret1;

else if(*%ip == ret2)
jmp ret2;

else
call attck_detected;

}

sled

sled

Control-Flow Attack
Vulnerable Code

Control-Data
Isolated Code

Figure 35. Replacing indirect branches with direct
branches [10]. Adapted from [10]

Dynamic Instrumentation
Component

Binary
Library

Path
analyzer

Path Monitoring

System call interceptor Cache
Verification

Figure 36. Architecture of PathArmor [95]. Adapted
from [95]

compares and direct jumps (see Figure 35). Subsequently, the
authors argue that doing this for every indirect instruction in
the binary will impact the performance considerably. Hence,
they introduce a hardware structure called the edge cache
that stores the program counter and the target of all the valid
indirect branches. While executing an indirect branch, if the
edge cache contains the mapping, the jump is deemed valid
and allowed. If it is not in the cache, the jump is validated
against all the possible valid targets using the CFG. If it is
valid, an entry is created in the edge cache, and the jump is
allowed.

van der Veen et al. [95], in their work PathArmor, propose
a context-sensitive CFI where they not only check if a con-
trol flow (forward or backward) is valid or not but also check
whether it is valid in the current context. A similar approach
was used to trim down the binary in [40]. The authors point
out three challenges in dynamically validating the branches
of an application: how to track the branches taken, what is
required to validate those branches, and when to validate
those branches? Figure 36 shows the architecture of PathAr-
mor. For the first challenge, they rely on Intel’s Last Branch
Record or LBR registers [56] to track the branches taken by

Figure 37. Architecture of BB-CFI [29]. Adapted from [29]

an application. They write a kernel module that interacts
with the application and provides access to the values stored
in the LBR registers (these registers can only be accessed
in Ring 0). For the second challenge, the authors acknowl-
edge the fact that calculating a CFG of an entire application
can lead to path explosion; hence, it is not practical. They
propose an on-demand, constraint-driven, context-sensitive
static analysis over a normalized CFG representation. The
analysis is on-demand because the validation is only done
when the application wants to take a particular branch, and
it is constraint-driven because it only checks for branching
within an application. It does not consider branches within
the dynamically-linked libraries. It is context-sensitive be-
cause it uses the LBR to look at the immediate history of the
branches taken to validate the current branching sequence.
Finally, a normalized CFG is used because it merges multi-
ple paths from one function to another into a single path.
PathArmor also keeps a cache of some of the recently vali-
dated paths in order to improve the performance. The cache
is maintained as a hash table.

Das et al. [29] argue that a CFG constructed using func-
tions is not granular enough to enforce the control flow
policies of an application. Hence, they propose to use basic
blocks and call the scheme basic block CFI or BB-CFI. The
authors argue that basic blocks are a natural point that can
be used to enforce control policies. Note that no jump is
allowed from within a basic block. Execution flow enters a
basic block from the first instruction and leaves at the last
instruction. Figure 37 provides an overview of the work-
ing of BB-CFI. They disassemble a binary to obtain a CFG.
However, this is incomplete as the addresses of the indirect
branches are missing. In order to fill this gap, the authors
profile the binary using different inputs and generate a list
of a valid set of target addresses for indirect branches. This
is an offline setup and is assumed to be free of attacks.

Once a set of valid addresses is generated, it is used during
the execution of the application to validate indirect branches:
❶ a call instruction must target the first instruction of a func-
tion. ❷ For a ret instruction, the authors maintain a return
address stack or RAS. During a call instruction, the address

25

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Figure 38. Tracing control flow in Griffin [38]. Adapted
from [38]

of the next instruction (which is the first instruction in the
immediately succeeding basic block that contained the call
instruction) is pushed. While returning, the ret instruction’s
target address is compared with the popped value from the
RAS stack. This is also known as call-ret pairing.

❸ A jmp instruction allows a jump to the first instruction
of any basic block in the application. The authors also discuss
few exceptional cases such as when a call-ret pair is replaced
by a call-jmp pair (for example in longjmp(). Also, exception
handlers need to be properly handled (they can jump to an
arbitrary location). In such cases also, the call-ret paradigm
will not be followed. This will result in false positives as the
RAS will not contain invalid return addresses. The authors
provide certain mechanisms in order to remove these false
positives. This is done by allowing ret instructions to target
addresses in the RAS and jmp instructions to target exception
handling addresses. They claim that this technique has an
accuracy of 100%. The implementation on an FPGA board
incurs a performance overhead of less than 1%.

7.2 Application execution trace
The trace of a process’s execution is an ordered set of exe-
cuted instructions. It contains every detail of what the pro-
cess did (or is doing) during the execution. It can be analyzed,
either online or offline, to detect any CFI violations by com-
paring the trace with another trace that is known to be from
a valid execution. However, as a process may execute mil-
lions of instructions, this set can be huge, and processing it
online is not a trivial task because it requires instrumenting
every instruction of the application and then processing it.
It will cause a significant performance overhead if done in
software. Hardware support such as Intel processor trace
or IPT ensures that the trace collection can be done with
minimal overhead.

Ge et al. [38], in their work Griffin, use IPT for online
enforcement of CFI policies on the forward edges (function
calls) and a shadow-stack on the backward edges (for return

pointers). The authors use the trace data generated by the
IPT to ensure CFI policies on the fly. However, doing so is
not trivial. The data generated by IPT is meant for debugging
purposes, and hence, is encoded to save space and processing
time. Furthermore, it also does not record information that
can be generated from other data (e.g., the source address of
an indirect branch). There are no issues if the processing is
done offline; however, online processing is difficult. IPT can
capture user-level and kernel-level traces; however, the au-
thors focus their attention on the user-level instruction trace.
The table below lists some of the trace packets generated by
the IPT, its usage, and its size.

Packet Usage Size (B)
PGE Packet Generation Enable packets provide

the PC at which the tracing begins
≤ 8

PGD Packet Generation Disable packets mark the
end of tracing

≤ 8

TNT Taken/Not-Taken packets indicate the direc-
tion of conditional branches

1

TIP Target IP packets provide the target for some
control-flow transfers

≤ 8

Griffin supports two kinds of CFI policies: coarse-grained
and fine-grained. The coarse-grained policy only checks if
the target address of an indirect branch is a valid address or
not. For this purpose, it maintains a page at a constant offset
with respect to every code page; 1 represents a valid jump
address and 0 means an invalid jump address. In the fine-
grained policy, Griffin checks whether the source and target
address pair is valid. For this, it maintains a bit-wise ma-
trix with rows representing the source address and columns
representing the target address. This matrix is dynamically
grown when a shared library is loaded. Here, Griffin needs to
decode the trace packets since they do not contain the source
address. To summarize, Griffin requires the trace packets and
a disassembled binary to reconstruct the CFG and validate
the jump.

Figure 38 shows a sample IPT trace and the corresponding
execution flow. The first PGE packet indicates that the exe-
cution begins at basic block 𝐴. Then it takes a direct jump to
block 𝐷 (no trace packets for a direct jump), then the TNE
packet indicates whether the conditional jump in block 𝐷

is taken or not. It is taken, so the control passes to block 𝐵.
The unconditional branch in block 𝐵 is not taken, and the
control falls to block 𝐶 . Then, the control is transferred to
block 𝐹 with a call instruction as recorded by the IPT packet.
The trace ends with a PGD packet. The authors propose to
use idle cores on a modern system to reduce the overhead.
They report a performance overhead of ≈ 11%.

Liu et al. [66] improve the runtime overhead involved in
using traces from IPT in their work FlowGuard. IPT generates
traces in an encoded format, which needs to be decoded later
to get the complete trace. FlowGuard addresses this challenge
by compressing and generating the control flow graph in the
same format as the encoded traces generated by IPT. This
makes the comparison of traces feasible. During the process

26

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

EXE

Libs.

Static Binary
Analysis

Dynamic
Fuzzing
Training

Credit
Labeled ITC-

CFG

Memory

Process

Syscall
Interceptor

Fast path Slow path

Kernel Module

Flow Checker

Cores

Figure 39. Architecture of FlowGuard [66]. Adapted
from [66]

Figure 40. Basic block boundaries [46]. Adapted from [46]

of offline generation, it automatically generates inputs for
the application and marks the edges in the graph with high
or low credits (see Figure 39). A high-credit branch can be
verified quickly while checking, while a low-credit branch is
checked more thoroughly – as these are rare. They report a
runtime overhead of 4%.

He et al. [46] leverage the trace from IPT to mark an
indirect jump as either valid or invalid. Note that entries
and exits can only happen at the boundaries of basic blocks.
There are no entry or exit points in the middle of a basic
block. They aspire to detect an entry into the middle of a
basic block, which causes CFI checks to fail (see Figure 40).

7.3 Trusted services
Hardware features can also be used to implement trusted
services in the operating system; they can be used by other
trusted or untrusted applications. For example, Intel SGX
allows for the secure execution of an application in a trusted
sandbox on the CPU. However, the application cannot access

Indirect 3 Indirect 2 Indirect 1 Direct

C
as

ca
de

d
U

pd
at

es

Data
blocks

Metadata
blocks Level 3

Level 2

Level 1

Level 0

Figure 41. Cascaded updates in an inode-based design [58].
Adapted from [58]

the file system as that falls under the purview of the operat-
ing system – an untrusted entity from the point of view of
SGX.
Kumar et al. [58] in their work, SecureFS, propose a se-

cure file system that can be used with Intel SGX without
modifying the application. The authors start by pointing out
that a secure file system must encrypt the file blocks with a
different key and also check their integrity before sending
them to the underlying, untrusted file system. As the data is
encrypted, an attack cannot read the content and also can-
not modify the content since it will fail the integrity checks.
The key used to encrypt the file block is generated anew for
every encryption. Doing so prevents a replay attack on the
encrypted file blocks, where an attacker can replay an old
encrypted block and can force an application to either leak
sensitive information or break internal security (like license
checks). The key is typically stored with the metadata of the
file system ([33, 58]). The metadata state is maintained in
the secure memory provided by SGX. Prior work in this area
had used an i-node-based file system to store the metadata.
This is the standard format used in modern file systems; it
is prevalent because of its flexibility and ability to support
large file systems. However, a secure application generally
does not require such a large file system. Furthermore, the
tree-like structure of an inode-based file system creates a
cascading effect of key updates upon an encryption (encrypt-
ing a child will force an update of its parent to store the
key, which in turn needs to be re-encrypted, and so on till
the root of the tree). To ameliorate the situation the authors
proposed a novel solution based on FAT tables.

Gregor et al. [43] used SGX to implement Palaemon, which
acts as a secret provisioning system in an untrusted environ-
ment. The first and foremost question is, how do you validate
an application’s request for a secret? Palaemon relies on the
local attestation process of Intel SGX. Using cryptographic
primitives, SGX guarantees that the requesting application
is running on the same machine and has not been tampered
with.

27

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Figure 42. Working of DATA [103]. Adapted from [103]

7.4 Machine/Deep learning approaches
Online methods to detect a CFI violation using an application
trace prevent an attack from doing any significant damage.
However, the overhead of processing the additional informa-
tion is still there. Another approach is to follow an optimistic
approach by allowing the execution to go through and just
log all the generated traces. This allows the defense methods
to find CFI violations using sophisticated methods, such as
machine learning, deep learning, and formal verification;
these would have led to a significant performance overhead
in an online mode.

Biondi et al. [15] argue that the trace generated for a
process is huge. They propose to first shrink its size by se-
lecting security-relevant parameters and then apply Markov
chain based analysis to assess if the application’s behavior
diverges from its ideal or safe execution path. They perform
the analysis on a tool called Quail [14], which can analyze
a process for its security properties using the compressed
form of the collected trace.

Weiser et al. [103] propose to detect address leaks in a
binary by analyzing its traces. They propose a three-stage
detection mechanism (see Figure 42). First, trace data is col-
lected by running a process multiple times. In the second
phase, different kinds of leaks are detected. Finally, in the
last stage, all the leaks are identified and categorized based
on the type of information they can leak.

Chen et al. [21] propose to use deep learning methods on
the trace collected via IPT. Deep learning methods are ideal
for processing large amounts of data, such as the trace of a
process. Using their method, the collected trace is converted
into an image. The image is then segmented to find anomalies
in the execution. It has two levels of operation: the lower
model is a per-application behavioral model, which is trained
via transfer learning on a time-series of images generated
from the control flow trace of an execution, and a higher-
level ensemble model, which collects all the low-level model
details to detect an attack. Figure 43 shows the working of
HeNet. To train a neural network, the authors use a transfer
learning approach, and transfer learned data from state of
the art deep neural networks such as Inception [91] and
VGG [86].

Figure 43. Overview of HeNet [21]. Adapted from [21]

Target
Program

Guest OS

Qemu-PT

Behavior
Modeling

Input

Basic Blocks

Anomaly
Detection

Prediction and Confidence

Figure 44. Overview of Barnum [104]. Adapted from [104]

Working on similar lines, Yagemann et al. [104] argue that
the size of the traces generated during an application execu-
tion is very large, and all of it is not useful in determining
whether there is an attack on the control flow integrity of
the application. The authors argue for an offline anomaly
detection method over a classification-based system since
any divergence from the normal control flow can be termed
an attack on the CFI, irrespective of the class of attack. The
authors propose to use the trace of a process since it requires
no modification to the application or any type of additional
instrumentation support. The authors leverage Intel Pro-
cessor Trace, or IPT, to efficiently collect the traces of an
application with a minimal performance overhead.
As shown in Figure 44, the proposed model called Bar-

num [104] has three layers: ❶ trace collection, ❷ control
flow modeling, and ❸ anomaly detection. The authors use
IPT for the first step. To generate a model, the authors use a
Long Short Term Memory or LSTM network, which consists
of an embedding layer, three LSTM layers, and a final dense
neural network (see Figure 45). Their model has an accuracy
of 98.1%, a precision of 100%, and a recall of 97.6%.

Zhang et al. [107] in their work DeepCheck, propose
using a deep learning method to detect code reuse attacks
on an application. They create a model for the control flow
of a process based on a coarse-grained control flow graph of

28

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

LSTM ReLU

Dense ReLUDense ReLU

Embedding ReLU

Features

Labels

Figure 45. Overview of the Barun LSTM model [104].
Adapted from [104]

B
in

ar
y

F
il

e

Coarse-
Grained CFG

Branch
Information

Fine-Grained
CFG

Benign Gadget
Chains

Malicious
Gadget Chains

Classifier

Disassemble

IPT

Branch
Information

IPT

Gadget
Chains

Classifier

Normal Control
Flow

CRA

Training Phase

Detection Phase

Figure 46.Working of DeepCheck [107]. Adapted from [107]

the application using the disassembled instructions from the
binary. The nodes in the generated CFG represent the gadgets
in the binary, and an edge between two gadgets indicates
a path in the control flow graph. As shown in Figure 46,
this coarse-grained CFG is combined with the dynamic trace
information (using IPT) to obtain a fine-grained CFG. .
This fine-grained model is sent as an input to a six-layer

deep neural network (DNN): one input layer, four hidden
layers, and one output layer. The hidden layers consist of
1024, 512, 128, and 32 nodes, respectively. A rectified linear
unit (ReLU) is used as the activation function. This model
is then used on the traces collected from other executions
to classify them either as a normal execution flow or as a
code reuse attack. The authors report an accuracy of up to
99.4% for a set of real-world workloads such as Adobe Flash,
Nginx, and Firefox.

7.5 Hardware performance counters
Modern systems have hardware performance counters built
into them. These counters capture fine-grained statistics of
either a process’s execution or for the complete system (see
Section 2.3 for more details).

Load test
programs

Launch
NumChecker

Execute test
programs

Log HPC results

Load test
programs

Launch
NumChecker

Count hardware
events

Count hardware
events

Log HPC results

Compare

Host

C
he

ck
in

g
flo

w

Clean guest Monitored guest

Offline Online

Execute test
programs

Figure 47.Working of NumChecker [98]. Adapted from [98]

Wang and Karri [98] propose to use these hardware coun-
ters to detect a kernel rootkit. A kernel rootkit attacks the
kernel of an operating system by either modifying the non-
control data in the kernel’s data structures or hijacking the
control flow of the kernel. The authors focus on the problem
of control flow. A popular example of an attack is where
a kernel rootkit replaces the system call table and diverts
the system calls to its malicious code. To detect such a kind
of attack, the authors propose to validate a system call by
monitoring the hardware counters during their execution.
They argue that each valid system call is associated with a
certain number of hardware events such as total instructions,
branches, returns, floating-point operations, etc. A malicious
implementation of the same system call will have a different
signature.
As shown in Figure 47, in the offline stage, the authors

use valid system calls and create “clean” profiles (number
of hardware events) for those calls. The input parameters
are varied to capture different paths taken by the OS to
service a particular system call. Later, to authenticate an OS,
a system call is made using known input parameters and
the hardware counters are monitored. This collected counter
data is compared with the original profile. The execution is
marked valid if the counters are within a threshold of the
"clean-copy" data (online-phase).

Working on a similar line, Lu and Hansen [68] use the in-
sight that during a return oriented programming attack, the
number of ret instructions executed will be high than when
compared to the normal execution of an application. This is
because in an ROP attack, the attacker overwrites the target
address of a ret instruction. This is done more than once to
form a chain of gadgets to execute a piece of malicious logic,
which results in a high number of ret instructions vis-a-vis

29

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

Monitored
system 1

Label

Label
Label

Label
Label

Label

Label
Label

Label
Label

Label

Label

Label

Label

Label

Monitored
system 2

Monitored
system 3

Remote
Analyzer

Analyze
Match
Detect

Identify
Malware
Database

Secure
Network

PMU
profile

PMU
profile

PMU
profile

Figure 48.Monitor systems in an HPC setting and validating
it remotely [97]. Adapted from [97]

normal execution. Apart from this, during the execution of
an application, the retired ret instructions are generally asso-
ciated with a correspondingcall instruction. This call-ret
pair is typically missing in an ROP attack. The authors use
these facts to propose unsupervised machine learning based
techniques to detect ROP attacks in an application.

Wang et al. [97] argue that in an HPC setting, the low-
level counters are readily accessible and can be used to profile
or validate a process. However, after collecting the data, it is
not necessary to analyze the data on the same system, which
may degrade the performance of the original application.
They compress the data and send it to a remote machine for
processing (see Figure 48). This ensures that vital informa-
tion required to detect the presence of malware in the system
is not lost during compression. To ensure this, they use a
technique called “compressive sensing”, which is a standard
technique for efficiently acquiring, compressing, transmit-
ting, and reconstructing a signal. The technique leverages
the sparsity in the data to recover it efficiently.

8 Research directions and future work
In this section, we discuss possible research directions for
the defense methods based on the material presented in the
paper.

8.1 Bounding the problem
The key to maintaining the CFI is that the binary should
not do what it is not supposed to. A modern application
contains millions of instructions and there are billions of
possible control paths. Statically generating all these control
paths is not feasible as some of those paths are dynamic
in nature. Furthermore, facilities such as shared libraries
and JIT code make the situation even worse. Arguing for a
dynamic approach to generate all the possible control paths is
even harder as it requires feeding the application all possible
inputs and varying the system state to take a large number
of values. Doing so is infeasible, and hence, modern defense
methods rely on an approximation of the space of control
paths and work on probabilistic defense mechanisms.

The key issue here is that defense methods are trying to
be too generic and cater to every possible input combination.
Real-world benchmarks have distinct signatures in terms of
their execution patterns. Defense methods can leverage this
behavior to limit the control paths an application can take
while executing. Developing a defense method for a particu-
lar application or for a set of applications that show similar
execution characteristics has multiple benefits: as stated be-
fore, it bounds the sample space of the control paths, the
defense method knows the sensitive parts of the applica-
tion, all the attack methods targeting it can be thoroughly
investigated (as it is also bounded now), and the defense
method can be configured to be highly optimized for the set
of applications.

8.2 Configuring defense methods
Modern applications are complicated, and the environment
they are executed on (a bare metal, a container, a VM, on
the edge) is even more so. Furthermore, it is rarely the case
that an application has complete access to all the hardware
resources. It generally shares these resources with other
applications over which it has no control whatsoever. All it
can do is trust the OS (and any other entity between it and
the hardware) to do a fair allocation of the resources.
While enabling this, an application has to have many in-

teractions with the OS, the hardware, and any other entity
managing the resources. These interactions are not trivial
and often form the basis for an attack on the CFI and also
other forms of attacks (side-channel attacks). The users of
an application do not possess the technical expertise or pa-
tience to go through all these interactions and then tune the
defense mechanisms. The ideal scenario is that a user lists
down the security requirement, preferably in simple and
clear terms, and then the OS (or some other entity) ensures
that those security requirements hold during the execution.
Relying on users to first correctly pick a defense mechanism,
then correctly tune it as per their requirements may either
lead to very strict rules (severely affecting the performance)
or very relaxed rules (severely affecting the security of the
application). Hence, there is a need for defense solutions
that are aware of users’ requirements and can also auto-tune
themselves.

8.3 What about the operating system?
In recent times, computing trends have seen a significant
shift from local machines/servers to commercial data centers,
colloquially known as “cloud computing”. This has enabled
small/medium sized users to scale up their applications to
millions of customers without having to worry about man-
aging and maintaining the costly servers. This is a highly
cost-effective way as the users do not have to worry about
the storage space for the servers, hire people to manage the
servers, ensure a consistent power supply, cooling unit, and
network connections.

30

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

However, the security of the data and the code on a remote,
untrusted server is also a big concern for users. A malicious
server administrator can access all the code and data stored
on the remote servers. Hence, there is a need to provide
secure computing in a cloud setting. Attacks can emanate
not only from a malicious server administrator but from
any other malicious privileged entity such as the operating
system or the hypervisor.

A TEE or a trusted execution environment is a promising
solution in such cases. A TEE ensures the security of an ex-
ecuting application in terms of its confidentiality, integrity,
and freshness. These security properties are guaranteed by
the hardware and cannot be tampered with even by priv-
ileged entities such as the OS and hypervisors. Intel SGX
is a TEE solution from Intel that is present in most of the
commercially available CPUs. However, as of now, Intel SGX
is severely restricted. For example, it only offers a limited
amount of secure memory of 128MB (extendable to 256MB
on some processors), does not allow direct system calls or
memory sharing and requires a large amount of porting ef-
fort by the developers. Researchers in industry and academia
have proposed many solutions that either alleviate some of
these challenges or increase the performance of applications
executing with SGX. Also, there have been efforts to execute
unmodified binaries on SGX. Graphene-SGX [19] is a library
operating system that acts as a shim layer for an application;
it executes system calls on an application’s behalf. However,
it incurs significant performance overheads. Hence, there is
a need to make TEE solutions more practical and transparent
to use.

8.4 Future of computing and security needs
In the past few years, the computing world has seen a para-
digm shift where computing has moved from desktops and
servers to big data centers. This service is known as IaaS, or
infrastructure-as-a-service. Here, the users pay for the infras-
tructure hosted at a remote location. It is a game-changing
move for small industries and developers, who could not
have found it affordable to buy and maintain servers and
networking equipment. Large industries eventually adopted
this new model, which led to the birth of another paradigm,
SaaS (software as a service). Microsoft Office 365 is one of
the prime examples of this, where developers moved the
traditional software products to a browser, and the complete
service moved to a subscription-based model instead of a
one-time payment. Another shift is happening in the data
center, where micro-services-based computing is becoming
more popular than monolithic designs. This facilitates easy
maintenance of the complete stack, better load-balancing,
and seamless integration of different components that have
possibly been coded using different programming paradigms.
However, along with the ease of development, the secu-

rity of these services is also important because, in this case,
breaching the security of one service may affect the entire

network’s security. Hence, there is a dire need to ensure the
CFI of these applications or micro-services executing on re-
mote, untrusted machines. Along with the usual challenges
of enforcing security policies, these services bring another
set of challenges along with them. These microservices are
sensitive to latency, and a performance bottleneck in any
one of the services can cascade to the whole stack (other
dependent services). Hence, there will be a requirement for
high-speed solutions for such services in the near term. A
low network overhead is preferred as the network traffic is
already too high because of communication between the con-
nected components. Any increased traffic here will impact
the performance of the entire network.
All these requirements point towards hardware-assisted

defense mechanisms due to their enhanced security guar-
antees (as they are directly embedded in the hardware) and
their performance is superior as compared to software-based
methods.

9 Conclusion
The number of attacks on the control flow integrity or CFI
of an application has significantly gone up in the past few
years. Every aspect of an application has been explored and
exploited by the attacker to violate the CFI property of an
application. Similarly, researchers have also explored a large
number of avenues to prevent these attacks. Lately, they
have adopted a hybrid approach towards providing defense
against such attacks by leveraging the security and speed of
the hardware and the flexibility of the software.

In this paper, we present a novel taxonomy for hardware-
assisted defense mechanisms based on their impact. We be-
lieve this presents a clear depiction of the existing defense
methods and also provides clear guidance to select a partic-
ular category of defense methods based on the user’s con-
straints and requirements (binary-based if we have access
to the source code, process-based if we have access to the
operating system’s internals, and system-based if we have
access to the system). Furthermore, our taxonomy can also
aid a security researcher by providing different ways to pro-
tect a feature of an application. For example, the stack of
an application can be prevented by either adding additional
memory checks or CFI-related instructions directly in the bi-
nary (binary-based), by using a shadow stack (process-based),
or by monitoring the character of operating system and
micro-architectural events (system-based).

31

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

References
[1] [n.d.]. Advanced Vector Extensions - Wikipedia. https://en.wikipedia.

org/wiki/Advanced_Vector_Extensions. (Accessed on 03/25/2022).
[2] [n.d.]. hiie-report-s16-17.pdf. https://courses.cs.ut.ee/MTAT.07.022/

2017_spring/uploads/Main/hiie-report-s16-17.pdf. (Accessed on
10/23/2019).

[3] [n.d.]. Intel® Software Guard Extensions | Intel® Software. https:
//software.intel.com/en-us/sgx. (Accessed on 12/14/2019).

[4] [n.d.]. The Kernel Address Sanitizer (KASAN) — The Linux Kernel
documentation. https://www.kernel.org/doc/html/v4.12/dev-tools/
kasan.html. (Accessed on 12/04/2021).

[5] [n.d.]. Physical unclonable function -Wikipedia. https://en.wikipedia.
org/wiki/Physical_unclonable_function. (Accessed on 12/02/2019).

[6] [n.d.]. TrustZone – Arm Developer. https://developer.arm.com/ip-
products/security-ip/trustzone. (Accessed on 12/14/2019).

[7] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.
Control-Flow Integrity. In Proceedings of the 12th ACM Conference
on Computer and Communications Security (Alexandria, VA, USA)
(CCS ’05). Association for Computing Machinery, New York, NY, USA,
340–353. https://doi.org/10.1145/1102120.1102165

[8] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-
King, Jearson Alfajardo, Benjamin Shteinfeld, David Williams-King,
Vasileios P. Kemerlis, and Georgios Portokalidis. 2020. Large-Scale
Debloating of Binary Shared Libraries. Digital Threats: Research and
Practice 1, 4, Article 19 (dec 2020), 28 pages. https://doi.org/10.1145/
3414997

[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Mark L
Stillwell, David Goltzsche, David Eyers, Peter Pietzuch, and Christof
Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. Osdi,
689–704.

[10] William Arthur, Sahil Madeka, Reetuparna Das, and Todd Austin.
2015. Locking Down Insecure Indirection with Hardware-based
Control-data Isolation. In Proceedings of the 48th International Sympo-
sium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). ACM, New
York, NY, USA, 115–127. https://doi.org/10.1145/2830772.2830801

[11] Todd Austin, Austin Harris, Tarunesh Verma, Shijia Wei, Alex Kisil,
Misiker Aga, Valeria Bertacco, Baris Kasikci, and Mohit Tiwari. 2021.
Morpheus II: A RISC-V Security Extension for Protecting Vulnerable
Software and Hardware. In 2021 IEEE Hot Chips 33 Symposium (HCS).
1–18. https://doi.org/10.1109/HCS52781.2021.9567000

[12] Denis Bakhvalov. 2018. PMU counters and profiling basics. |
Easyperf. https://easyperf.net/blog/2018/06/01/PMU-counters-and-
profiling-basics. (Accessed on 12/18/2021).

[13] Mario Barbareschi, Pierpaolo Bagnasco, and Antonino Mazzeo. 2015.
Authenticating IoT Devices with Physically Unclonable Functions
Models. 2015 10th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC) (2015), 563–567.

[14] Fabrizio Biondi, Axel Legay, Louis-Marie Traonouez, and Andrzej
Wasowski. 2013. QUAIL: A Quantitative Security Analyzer for Im-
perative Code, Vol. 8044. 702–707. https://doi.org/10.1007/978-3-642-
39799-8_49

[15] F. Biondi, Jean Quilbeuf, and A. Legay. 2014. Information Leakage by
Trace Analysis in QUAIL.

[16] Nathan Burow, X. Zhang, and M. Payer. 2019. SoK: Shining Light on
Shadow Stacks. 2019 IEEE Symposium on Security and Privacy (SP)
(2019), 985–999.

[17] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. 2015. Control-Flow Bending: On the Effective-
ness of Control-Flow Integrity. In 24th USENIX Security Symposium
(USENIX Security 15). USENIX Association, Washington, D.C., 161–
176. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/carlini

[18] Buddhika Chamith, Xiaozhu Meng, and Ryan Newton. 2020. Shadow-
Guard : Optimizing the Policy and Mechanism of Shadow Stack In-
strumentation using Binary Static Analysis. arXiv:2002.07748 [cs.CR]

[19] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-
SGX: A Practical Library OS for Unmodified Applications on SGX. In
USENIX Annual Technical Conference.

[20] Kejun Chen, Orlando Arias, Qingxu Deng, Daniela Oliveira, Xiaolong
Guo, and Yier Jin. 2022. FineDIFT: Fine-Grained Dynamic Information
Flow Tracking for Data-Flow Integrity Using Coprocessor. IEEE
Transactions on Information Forensics and Security 17 (2022), 559–
573.

[21] Li Chen, Salmin Sultana, and Ravi Sahita. 2018. HeNet: A Deep
Learning Approach on Intel® Processor Trace for Effective Exploit
Detection. 2018 IEEE Security and Privacy Workshops (SPW) (2018),
109–115.

[22] George Christou, Giorgos Vasiliadis, Vassilis Papaefstathiou, An-
tonis Papadogiannakis, and Sotiris Ioannidis. 2020. On Architec-
tural Support for Instruction Set Randomization. ACM Trans. Ar-
chit. Code Optim. 17, 4, Article 36 (nov 2020), 26 pages. https:
//doi.org/10.1145/3419841

[23] Context. [n.d.]. Microsoft Word - Return-to-libc.txt. https://css.
csail.mit.edu/6.858/2017/readings/return-to-libc.pdf. (Accessed on
12/05/2021).

[24] Luigi Coppolino, Salvatore D’Antonio, Giovanni Mazzeo, and Luigi
Romano. 2019. A comprehensive survey of hardware-assisted secu-
rity: From the edge to the cloud. Internet Things 6 (2019). https:
//doi.org/10.1016/j.iot.2019.100055

[25] Jonathan Corbet. 2017. ARM pointer authentication [LWN.net]. https:
//lwn.net/Articles/718888/. (Accessed on 12/17/2021).

[26] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016 (2016), 86.

[27] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptology ePrint Archive 2016 (2016), 86.

[28] Thurston H. Y. Dang, Petros Maniatis, and David A. Wagner. 2015.
The Performance Cost of Shadow Stacks and Stack Canaries. Pro-
ceedings of the 10th ACM Symposium on Information, Computer and
Communications Security (2015).

[29] Sanjeev Das, Wei Zhang, and Yang Liu. 2016. A Fine-Grained Con-
trol Flow Integrity Approach Against Runtime Memory Attacks for
Embedded Systems. IEEE Trans. Very Large Scale Integr. Syst. 24, 11
(Nov. 2016), 3193–3207. https://doi.org/10.1109/TVLSI.2016.2548561

[30] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi,
Patrick Koeberl, Dean Sullivan, Orlando Arias, and Yier Jin. 2015.
HAFIX: Hardware-assisted Flow Integrity Extension. In Proceedings
of the 52Nd Annual Design Automation Conference (San Francisco,
California) (DAC ’15). ACM, New York, NY, USA, Article 74, 6 pages.
https://doi.org/10.1145/2744769.2744847

[31] David J. Day, Zhengxu Zhao, and Minhua Ma. 2010. Detecting Return-
to-libc Buffer Overflow Attacks Using Network Intrusion Detection
Systems. 2010 Fourth International Conference on Digital Society (2010),
172–177.

[32] Ruan de Clercq and Ingrid Verbauwhede. 2017. A survey of Hardware-
based Control Flow Integrity (CFI). CoRR abs/1706.07257 (2017).
arXiv:1706.07257 http://arxiv.org/abs/1706.07257

[33] Judicael B. Djoko, Jack Lange, andAdam J. Lee. 2019. NeXUS: Practical
and Secure Access Control on Untrusted Storage Platforms using
Client-Side SGX. 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) (2019), 401–413.

[34] S. Du, Hui Shu, F. Kang, Xiaobing Xiong, and Zheng Wang. 2017.
Hardware-based instruction set randomization against code injection
attacks. 2017 3rd IEEE International Conference on Computer and
Communications (ICCC) (2017), 1426–1433.

[35] Abbas A. Fairouz, Monther Abusultan, Viacheslav V. Fedorov, and
Sunil P. Khatri. 2021. Hardware Acceleration of Hash Operations in
ModernMicroprocessors. IEEE Trans. Comput. 70, 9 (2021), 1412–1426.
https://doi.org/10.1109/TC.2020.301085532

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://courses.cs.ut.ee/MTAT.07.022/2017_spring/uploads/Main/hiie-report-s16-17.pdf
https://courses.cs.ut.ee/MTAT.07.022/2017_spring/uploads/Main/hiie-report-s16-17.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.12/dev-tools/kasan.html
https://en.wikipedia.org/wiki/Physical_unclonable_function
https://en.wikipedia.org/wiki/Physical_unclonable_function
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3414997
https://doi.org/10.1145/3414997
https://doi.org/10.1145/2830772.2830801
https://doi.org/10.1109/HCS52781.2021.9567000
https://easyperf.net/blog/2018/06/01/PMU-counters-and-profiling-basics
https://easyperf.net/blog/2018/06/01/PMU-counters-and-profiling-basics
https://doi.org/10.1007/978-3-642-39799-8_49
https://doi.org/10.1007/978-3-642-39799-8_49
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://arxiv.org/abs/2002.07748
https://doi.org/10.1145/3419841
https://doi.org/10.1145/3419841
https://css.csail.mit.edu/6.858/2017/readings/return-to-libc.pdf
https://css.csail.mit.edu/6.858/2017/readings/return-to-libc.pdf
https://doi.org/10.1016/j.iot.2019.100055
https://doi.org/10.1016/j.iot.2019.100055
https://lwn.net/Articles/718888/
https://lwn.net/Articles/718888/
https://doi.org/10.1109/TVLSI.2016.2548561
https://doi.org/10.1145/2744769.2744847
http://arxiv.org/abs/1706.07257
http://arxiv.org/abs/1706.07257
https://doi.org/10.1109/TC.2020.3010855

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

[36] Daichi Fukui, Mamoru Shimaoka, Hiroki Mikami, Dominic Hillen-
brand, Hideo Yamamoto, Keiji Kimura, and Hironori Kasahara. 2015.
Annotatable Systrace: An Extended Linux Ftrace for Tracing a Paral-
lelized Program. In Proceedings of the 2nd International Workshop on
Software Engineering for Parallel Systems (Pittsburgh, PA, USA) (SEPS
2015). Association for Computing Machinery, New York, NY, USA,
21–25. https://doi.org/10.1145/2837476.2837479

[37] Mark Gallagher, Lauren Biernacki, Shibo Chen, Zelalem Birhanu
Aweke, Salessawi Ferede Yitbarek, M. T. Aga, Austin Harris, Zhixing
Xu, Baris Kasikci, V. Bertacco, S. Malik, Mohit Tiwari, and T. Austin.
2019. Morpheus: A Vulnerability-Tolerant Secure Architecture Based
on Ensembles of Moving Target Defenses with Churn. Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (2019).

[38] Xinyang Ge,Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding
Control Flows Using Intel Processor Trace. In ASPLOS.

[39] Dimitris Geneiatakis, Georgios Portokalidis, Vasileios P. Kemerlis, and
Angelos D. Keromytis. 2012. Adaptive Defenses for Commodity Soft-
ware through Virtual Application Partitioning (CCS ’12). Association
for Computing Machinery. https://doi.org/10.1145/2382196.2382214

[40] Masoud Ghaffarinia and KevinWHamlen. 2019. Binary Control-Flow
Trimming. In CCS ’19.

[41] Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. 2014. Out of Control: Overcoming Control-Flow Integrity.
In 2014 IEEE Symposium on Security and Privacy. IEEE. https:
//doi.org/10.1109/sp.2014.43

[42] Brendan Gregg and Jim Mauro. 2011. DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD (1st ed.). Prentice Hall Press,
Upper Saddle River, NJ, USA.

[43] F. Gregor, W. Ozga, S. Vaucher, R. Pires, D. Le Quoc, S. Arnautov, A.
Martin, V. Schiavoni, P. Felber, and C. Fetzer. 2020. Trust Management
as a Service: Enabling Trusted Execution in the Face of Byzantine
Stakeholders. In 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 502–514.

[44] Aisha Hasan, Ryan Riley, and Dmitry Ponomarev. 2020. Port or
Shim? Stress Testing Application Performance on Intel SGX. In 2020
IEEE International Symposium on Workload Characterization (IISWC).
123–133. https://doi.org/10.1109/IISWC50251.2020.00021

[45] Vikas Hassija, V. Chamola, V. Saxena, D. Jain, Pranav Goyal, and B.
Sikdar. 2019. A Survey on IoT Security: Application Areas, Security
Threats, and Solution Architectures. IEEE Access 7 (2019), 82721–
82743.

[46] Wenjian He, Sanjeev Das, Wei Zhang, and Yang Liu. 2017. No-jump-
into-basic-block: Enforce basic block CFI on the fly for real-world
binaries. 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC) (2017), 1–6.

[47] Adrian Hoban. [n.d.]. Using Intel AES-NI to Significantly Improve
IPSec Performance on Linux. https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/aes-ipsec-
performance-linux-paper.pdf. (Accessed on 03/25/2022).

[48] Konrad Hohentanner, Philipp Zieris, and Julian Horsch. 2022. PAC-
Safe: Leveraging ARM Pointer Authentication for Memory Safety in
C/C++. ArXiv abs/2202.08669 (2022).

[49] Catalin Hritcu. 2015. Micro-Policies: Formally Verified, Tag-Based
Security Monitors. In PLAS@ECOOP.

[50] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Pra-
teek Saxena, and Zhenkai Liang. 2016. Data-Oriented Programming:
On the Expressiveness of Non-control Data Attacks. 2016 IEEE Sym-
posium on Security and Privacy (SP) (2016), 969–986.

[51] M. Husak, J. Komarkova, E. BouHarb, and Pavel Celeda. 2019. Survey
of Attack Projection, Prediction, and Forecasting in Cyber Security.
IEEE Communications Surveys & Tutorials 21 (2019), 640–660.

[52] Intel. 2017. Intel Processor Trace Tools | Intel® Software. https:
//software.intel.com/en-us/node/721535.

[53] Intel. 2019. SDK Intel Software Guard Extensions. https://software.
intel.com/en-us/sgx/sdk. (Accessed on 10/25/2019).

[54] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory
encryption. White paper (2016).

[55] Deokjin Kim, Daehee Jang, Minjoon Park, Yunjong Jeong, Jonghwan
Kim, Seokjin Choi, and Brent Byunghoon Kang. 2019. SGX-LEGO:
Fine-grained SGX controlled-channel attack and its countermeasure.
Comput. Secur. 82 (2019), 118–139.

[56] Andi Kleen. 2016. An introduction to last branch records [LWN.net].
https://lwn.net/Articles/680985/. (Accessed on 11/17/2018).

[57] S Kumar, D Moolchandani, T Ono, and S R Sarangi. 2019. F-LaaS: A
Control-Flow-Attack Immune License-as-a-Service Model. In 2019
IEEE International Conference on Services Computing (SCC). 80–89.
https://doi.org/10.1109/SCC.2019.00025

[58] Sandeep Kumar and Smruti R. Sarangi. 2021. SecureFS: A Secure
File System for Intel SGX (RAID ’21). Association for Computing
Machinery, New York, NY, USA, 91–102. https://doi.org/10.1145/
3471621.3471840

[59] Nate Lawson. 2009. Side-Channel Attacks on Cryptographic Software.
IEEE Security and Privacy 7, 6 (Nov. 2009), 65–68. https://doi.org/10.
1109/MSP.2009.165

[60] Jinyong Lee, Ingoo Heo, Yongje Lee, and Yunheung Paek. 2015. Effi-
cient Dynamic Information Flow Tracking on a Processor with Core
Debug Interface. In Proceedings of the 52nd Annual Design Automa-
tion Conference (San Francisco, California) (DAC ’15). Association
for Computing Machinery, New York, NY, USA, Article 79, 6 pages.
https://doi.org/10.1145/2744769.2744830

[61] Yongsuk Lee and Gyungho Lee. 2019. HW-CDI: Hard-Wired Control
Data Integrity. IEEE Access 7 (2019), 10811–10822.

[62] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer
Integrity using ARM Pointer Authentication. In 28th USENIX Security
Symposium (USENIX Security 19). USENIX Association, Santa Clara,
CA, 177–194. https://www.usenix.org/conference/usenixsecurity19/
presentation/liljestrand

[63] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David M. Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter R. Piet-
zuch. 2017. Glamdring: Automatic Application Partitioning for Intel
SGX. In USENIX Annual Technical Conference.

[64] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM
Leung. 2018. A survey on security threats and defensive techniques
of machine learning: A data driven view. IEEE access 6 (2018), 12103–
12117.

[65] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. 2017. Transparent and Efficient CFI Enforcement with
Intel Processor Trace. 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (2017), 529–540.

[66] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and
Haibing Guan. 2017. Transparent and Efficient CFI Enforcement with
Intel Processor Trace. In Proceedings - International Symposium on
High-Performance Computer Architecture. https://doi.org/10.1109/
HPCA.2017.18

[67] Tao Lu. 2021. A Survey on RISC-V Security: Hardware and Ar-
chitecture. CoRR abs/2107.04175 (2021). arXiv:2107.04175 https:
//arxiv.org/abs/2107.04175

[68] Yifan Lu and Christopher Hansen. 2015. ROPDetect : Detection of
Code Reuse Attacks.

[69] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maz-
ières. 2015. CCFI: Cryptographically Enforced Control Flow Integrity.
In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security (Denver, Colorado, USA) (CCS ’15).
ACM, New York, NY, USA, 941–951. https://doi.org/10.1145/2810103.
2813676

33

https://doi.org/10.1145/2837476.2837479
https://doi.org/10.1145/2382196.2382214
https://doi.org/10.1109/sp.2014.43
https://doi.org/10.1109/sp.2014.43
https://doi.org/10.1109/IISWC50251.2020.00021
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-ipsec-performance-linux-paper.pdf
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://lwn.net/Articles/680985/
https://doi.org/10.1109/SCC.2019.00025
https://doi.org/10.1145/3471621.3471840
https://doi.org/10.1145/3471621.3471840
https://doi.org/10.1109/MSP.2009.165
https://doi.org/10.1109/MSP.2009.165
https://doi.org/10.1145/2744769.2744830
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://doi.org/10.1109/HPCA.2017.18
https://doi.org/10.1109/HPCA.2017.18
https://arxiv.org/abs/2107.04175
https://arxiv.org/abs/2107.04175
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2810103.2813676

JSA, June, 2022 Sandeep Kumar, Diksha Moolchandani, and Smruti R. Sarangi

[70] Marcela S. Melara, M. Freedman, and M. Bowman. 2019. EnclaveDom:
Privilege Separation for Large-TCBApplications in Trusted Execution
Environments. ArXiv abs/1907.13245 (2019).

[71] Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala, and
Kamakoti Veezhinathan. 2017. Shakti-T: A RISC-V Processor with
Light Weight Security Extensions. In Proceedings of the Hardware and
Architectural Support for Security and Privacy (Toronto, ON, Canada)
(HASP ’17). Association for Computing Machinery, New York, NY,
USA, Article 2, 8 pages. https://doi.org/10.1145/3092627.3092629

[72] Ahmad Moghimi. 2017. Side-Channel Attacks on Intel SGX: How
SGX Amplifies The Power of Cache Attack.

[73] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen,
and Michael Franz. 2015. Opaque Control-Flow Integrity. In NDSS.

[74] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2015.
Everything You Want to Know About Pointer-Based Checking. In
SNAPL.

[75] Nergal. 2001. The advanced return-into-lib(c) exploits. http://phrack.
org/issues/58/4.html. (Accessed on 12/05/2021).

[76] J. Newsome and D. Song. 2005. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and SignatureGeneration of Exploits on
Commodity Software. In NDSS.

[77] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES. In Proceedings of the 2006 The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology
(San Jose, CA) (CT-RSA’06). Springer-Verlag, Berlin, Heidelberg, 1–20.
https://doi.org/10.1007/11605805_1

[78] Perf. 2021. Tutorial Perf Wiki. https://perf.wiki.kernel.org/index.php/
Tutorial. (Accessed on 12/17/2021).

[79] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. 2006. LIFT:
A Low-Overhead Practical Information Flow Tracking System for
Detecting Security Attacks. In 2006 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’06). 135–148. https:
//doi.org/10.1109/MICRO.2006.29

[80] Pengfei Qiu, Yongqiang Lyu, Jiliang Zhang, Dongsheng Wang, and
Gang Qu. 2018. Control Flow Integrity Based on Lightweight En-
cryption Architecture. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 37, 7 (jul 2018), 1358–1369.
https://doi.org/10.1109/TCAD.2017.2748000

[81] N. Roessler and A. DeHon. 2018. Protecting the Stack with Metadata
Policies and Tagged Hardware. In 2018 IEEE Symposium on Security
and Privacy (SP). 478–495. https://doi.org/10.1109/SP.2018.00066

[82] Kirk Yap Wajdi Feghali Jim Guilford Sean Gulley, Vin-
odh Gopal and Gil Wolrich. [n.d.]. Intel SHA Extensions.
https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sha-extensions.html. (Accessed on 03/25/2022).

[83] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs. In NDSS.

[84] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address Sanity
Checker. In 2012 USENIX Annual Technical Conference (USENIX ATC
12). USENIX Association, Boston, MA, 309–318. https://www.usenix.
org/conference/atc12/technical-sessions/presentation/serebryany

[85] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad
Tsyrklevich, and Dmitry Vyukov. 2018. Memory Tagging and how
it improves C/C++ memory safety. CoRR abs/1802.09517 (2018).
arXiv:1802.09517 http://arxiv.org/abs/1802.09517

[86] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[87] Kanad Sinha, Vasileios P. Kemerlis, and Simha Sethumadhavan. 2017.
Reviving instruction set randomization. In 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). 21–28.
https://doi.org/10.1109/HST.2017.7951732

[88] Kanad Sinha and Simha Sethumadhavan. 2018. Practical Memory
Safety with REST. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA
’18). IEEE Press, 600–611. https://doi.org/10.1109/ISCA.2018.00056

[89] Nicolas Sklavos. 2012. Cryptographic hardware & embedded systems
for communications. In 2012 IEEE First AESS European Conference on
Satellite Telecommunications (ESTEL). IEEE, 1–6.

[90] Mark Stone. [n.d.]. Shellshock In-Depth: Why This Old Vulnerability
Won’t Go Away. https://securityintelligence.com/articles/shellshock-
vulnerability-in-depth/. (Accessed on 12/13/2021).

[91] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A.
Alemi. 2017. Inception-v4, Inception-ResNet and the Impact of Resid-
ual Connections on Learning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence (San Francisco, California, USA)
(AAAI’17). AAAI Press, 4278–4284.

[92] PaX Team. [n.d.]. https://pax.grsecurity.net/docs/aslr.txt. https://pax.
grsecurity.net/docs/aslr.txt. (Accessed on 11/01/2020).

[93] Qualcomm Technologies. 2017. Pointer Authentication on
ARMv8.3: Design and Analysis of the New Software Security In-
structions. https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf. (Accessed on
12/17/2021).

[94] Ryung Uh, Robert S. Cohn, Bharadwaj Yadavalli, Ramesh V. Peri, and
Ravi Ayyagari. 2006. Analyzing Dynamic Binary Instrumentation
Overhead Gang -.

[95] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
2015. Practical Context-Sensitive CFI. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity (Denver, Colorado, USA) (CCS ’15). Association for Computing
Machinery, New York, NY, USA, 927–940. https://doi.org/10.1145/
2810103.2813673

[96] A. Venkat, Sriskanda Shamasunder, H. Shacham, and DeanM. Tullsen.
2016. HIPStR: Heterogeneous-ISA Program State Relocation. In ASP-
LOS ’16.

[97] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh
Karri. 2016. Hardware Performance Counter-Based Malware Iden-
tification and Detection with Adaptive Compressive Sensing. ACM
Trans. Archit. Code Optim. 13, 1, Article 3 (March 2016), 23 pages.
https://doi.org/10.1145/2857055

[98] Xueyang Wang and Ramesh Karri. 2013. NumChecker: Detect-
ing Kernel Control-Flow Modifying Rootkits by Using Hardware
Performance Counters. In Proceedings of the 50th Annual Design
Automation Conference (Austin, Texas) (DAC ’13). Association for
Computing Machinery, New York, NY, USA, Article 79, 7 pages.
https://doi.org/10.1145/2463209.2488831

[99] XiaoguangWang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-
Hoon Kim, and Binoy Ravindran. 2020. A Framework for Software
Diversification with ISA Heterogeneity. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID 2020).
USENIX Association, San Sebastian, 427–442. https://www.usenix.
org/conference/raid2020/presentation/wang-xiaoguang

[100] Ye Wang, Qingbao Li, Zhifeng Chen, Ping Zhang, and Guimin Zhang.
2020. A Survey of Exploitation Techniques and Defenses for Program
Data Attacks. Journal of Network and Computer Applications 154 (03
2020), 102534. https://doi.org/10.1016/j.jnca.2020.102534

[101] Yu Wang, Jinting Wu, Tai Yue, Zhenyu Ning, and Fengwei Zhang.
2022. RetTag: Hardware-assisted Return Address Integrity on RISC-V.
(2022).

[102] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018.
sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves. In
Middleware.

[103] S. Weiser, A. Zankl, Raphael Spreitzer, K. Miller, S. Mangard, and
G. Sigl. 2018. DATA - Differential Address Trace Analysis: Find-
ing Address-based Side-Channels in Binaries. In USENIX Security

34

https://doi.org/10.1145/3092627.3092629
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
https://doi.org/10.1007/11605805_1
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1109/SP.2018.00066
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/HST.2017.7951732
https://doi.org/10.1109/ISCA.2018.00056
https://securityintelligence.com/articles/shellshock-vulnerability-in-depth/
https://securityintelligence.com/articles/shellshock-vulnerability-in-depth/
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2857055
https://doi.org/10.1145/2463209.2488831
https://www.usenix.org/conference/raid2020/presentation/wang-xiaoguang
https://www.usenix.org/conference/raid2020/presentation/wang-xiaoguang
https://doi.org/10.1016/j.jnca.2020.102534

Hardware-Assisted Mechanisms to Enforce Control Flow Integrity: A Comprehensive Survey JSA, June, 2022

Symposium.
[104] Carter Yagemann, S. Sultana, Li Chen, and W. Lee. 2019. Barnum: De-

tecting Document Malware via Control Flow Anomalies in Hardware
Traces. In ISC.

[105] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In 23rd
USENIX Security Symposium (USENIX Security 14). USENIX Associa-
tion, San Diego, CA, 719–732. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[106] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos
Kozyrakis. 2008. Hardware Enforcement of Application Security
Policies Using Tagged Memory. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation (San Diego,

California) (OSDI’08). USENIX Association, USA, 225–240.
[107] Jiliang Zhang, Wuqiao Chen, and Y. Niu. 2019. DeepCheck: A Non-

intrusive Control-flow Integrity Checking based on Deep Learning.
ArXiv abs/1905.01858 (2019).

[108] Jiliang Zhang, Binhang Qi, and Gang Qu. 2018. HCIC: Hardware-
assisted Control-flow Integrity Checking. CoRR abs/1801.07397
(2018).

[109] Tong Zhang, Dongyoon Lee, and Changhee Jung. 2019. BOGO: Buy
Spatial Memory Safety, Get Temporal Memory Safety (Almost) Free.
International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS (2019), 631–644. https:
//doi.org/10.1145/3297858.3304017

35

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1145/3297858.3304017
https://doi.org/10.1145/3297858.3304017

	Abstract
	1 Introduction
	1.1 Scope of the survey
	1.2 Organization of the paper

	2 Background
	2.1 Safe and unsafe languages
	2.2 Attacks on control flow integrity
	2.3 Hardware advancements
	2.4 Hardware-accelerated instructions
	2.5 Hardware performance counters
	2.6 RISC-V

	3 Related work
	4 Taxonomy
	4.1 Challenges
	4.2 Classification
	4.3 A binary-based classification
	4.4 A process-based classification
	4.5 A system-based classification

	5 Binary-based defense methods
	5.1 Binary re-writing
	5.2 Binary splitting: secure and unsecure
	5.3 Binary randomization
	5.4 Control flow tracking of binaries
	5.5 Heterogeneous architectures

	6 Process-based defense methods
	6.1 Dynamic process randomization
	6.2 Protecting the stack
	6.3 Pointer verification
	6.4 Runtime metadata
	6.5 Protecting control flow data

	7 System-based defense methods
	7.1 Control flow verification
	7.2 Application execution trace
	7.3 Trusted services
	7.4 Machine/Deep learning approaches
	7.5 Hardware performance counters

	8 Research directions and future work
	8.1 Bounding the problem
	8.2 Configuring defense methods
	8.3 What about the operating system?
	8.4 Future of computing and security needs

	9 Conclusion
	References

